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Abstract

Language is a highly structured medium for communication. An idea starts

in the speaker’s mind (semantics) and is transformed into a well formed,

intelligible, sentence via the specific syntactic rules of a language. We aim to

discover the fingerprints of this process in the choice and location of words

used in the final utterance. What is unclear is how much of this latent

process can be discovered from the linguistic signal alone and how much

requires shared non-linguistic context, knowledge, or cues.

Unsupervised grammar induction is the task of analyzing strings in a lan-

guage to discover the latent syntactic structure of the language without access

to labeled training data. Successes in unsupervised grammar induction shed

light on the amount of syntactic structure that is discoverable from raw or

part-of-speech tagged text. In this thesis, we present a state-of-the-art gram-

mar induction system based on Combinatory Categorial Grammars. Our

choice of syntactic formalism enables the first labeled evaluation of an unsu-

pervised system. This allows us to perform an in-depth analysis of the sys-

tem’s linguistic strengths and weaknesses. In order to completely eliminate

reliance on any supervised systems, we also examine how performance is af-

fected when we use induced word clusters instead of gold-standard POS tags.

Finally, we perform a semantic evaluation of induced grammars, providing

unique insights into future directions for unsupervised grammar induction

systems.
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Chapter 1

Introduction

Human language serves as the means for transferring information from one

person to another, but despite being so fundamental must be learned by

observing other speakers in the environment. Language is a highly structured

form of communication whose rules (syntactic, morphological, phonetic, etc.)

are necessary for understanding.

The task of a language learner is to both build a model of the world and

learn how words and sentences map to objects and concepts in that space.

Within Artificial Intelligence we try to replicate this process by breaking

up the learning and reasoning into subtasks, ignoring their co-dependence.

Within Natural Language Processing (NLP) and Computational Linguistics

(CL) we further break down the problem into many subtasks, including:

part-of-speech tagging, named-entity resolution, syntactic parsing, corefer-

ence resolution, sentiment classification, question answering, information ex-

traction, and so on. Methodologically, breaking down and understanding

different aspects of language is an important first step because it organizes

the space of phenomena captured and expressed by language.

To understand these pieces better, the community has built annotated

resources and linguistic theories for their structures. Within NLP, machine

learning is then applied to abstract sets of features and labels to predict and

recover these phenomena.

Unfortunately, the creation of so many tasks and their corresponding data

is very labor intensive while also seemingly at odds with the ease with which

humans acquire language from exposure to others speaking around them.

Unsupervised methods try to lower the annotation burden and address the

question of learnability by attempting to replicate existing results on natural

language tasks without the use of annotated training data.

In this thesis we focus specifically on the unsupervised acquisition of gram-

mars. The problem domain can take many forms but assumes the presence
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of segmented text and the learning goal is to produce syntactic structures

(dependencies). We will define these and other assumptions in more detail

throughout the thesis.

1.1 Thesis Statement

This dissertation introduces an algorithm for the unsupervised induction

of Combinatory Categorial Grammars, and probabilistic models for parsing

with the resultant grammars that complete or surpass the state of the art.

One major difference to prior work is that our use of Categorial Grammars

enables us to perform a detailed, linguistically informed error analysis. This

analysis will expose failings in the current approachs to grammar induction

and enable head-to-head comparisons between an unsupervised and super-

vised parser on both a labeled syntactic and semantic evaluation. These are

essential first steps towards the goal of inducing unsupervised parsers.

1.2 Contributions of this thesis

Chapter 2: A brief introduction to fundamentals of Combinatory Cate-

gorial Grammar (CCG). We explain how the grammar is defined, used for

parsing and semantics, and important ways in which it differs from CFGs

and Dependency Grammars. CCG will form the basis of our approach in

this thesis.

Chapter 3: All existing approaches to creating an unsupervised catego-

rial grammar require a linguist to hand-craft lexical categories. Existing

approaches to inject supervision into grammar induction require knowledge

of attachment preferences and language-specific syntax. By contrast, we in-

troduce a simple procedure for automatically inducing a grammar with only

knowledge of nouns and verbs.

Chapter 4: Given an automatically induced grammar, we train a simple

PCFG model that outperforms many existing approaches on English and

performs competitively with systems that use more knowledge than our ap-

proach.

2



Chapter 5: We devise a novel non-parametric Bayesian model for CCG

which uniquely captures the constrained structure of CCG parses. We explore

a uniquely simple modeling of punctuation, extend our model to include

words as lexical productions, and explore non-local dependencies.

Chapter 6: We perform competitively or outperform existing approaches

on 29 corpora of various languages, formalisms, and train/test splits. Addi-

tionally, we produce human interpretable predictions about the lexicon of the

languages tested. We then extend our approach to produce the only labeled

parses from an unsupervised induction system in the literature. This enables

direct comparison to supervised parsers and an in-depth linguistic analysis

with insights into the learnability of language. We enumerate constructions

which require semantics and therefore require rethinking the grammar induc-

tion task.

Chapter 7: We perform grammar induction and labeled evaluation with

induced clusters from raw text in lieu of gold part-of-speech tags. Further, our

very limited supervision provides large performance gains in many languages

and insights into why tagging and syntax should be estimated jointly.

Chapter 8: Finally, we exploit CCG’s clean interface to semantics in order

to produce grounded semantics from a supervised, semi-supervised, and un-

supervised parser. The unsupervised system captures enough semantics to

outperform a bag-of-words model on complex sentences. Further, we demon-

strate a clear correlation between syntactic and semantic performance, indi-

cating that future work can and should cleanly integrate semantic feedback.

Our goal in this thesis is to introduce a state-of-the-art system in grammar

induction and provide a new and unique analysis of the task. We succeed in

defining a new state-of-the-art in many languages and begin to break down

the abstraction barriers assumed between tagging and parsing and between

parsing and semantics. The creation of a true language learner will require

that none of these tasks be tackled in isolation or assumed to be independent.
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Chapter 2

Background

2.1 Syntactic Parsing

Syntactic parsing is the task of analyzing sentences and annotating them

with informative syntactic analyses. Automatic syntactic parsing aims to

build computer programs which annotate novel, unseen texts with accuracy

comparable to a human annotator. The purpose of creating these syntac-

tic analyses, parses, is to identify a latent structure that links words in a

sentence and which we believe is required for extracting the semantics of a

sentence. Achieving this raises a number of important questions about the

true structure of language or what we want an automated system to be ca-

pable of producing. There are a number of syntactic theories that have been

developed for expressing the range of phenomena observed across the world’s

languages which can serve as possible representations. Within the empirical

field of NLP, in whose purview the task of automatic syntactic parsing falls,

the type of information a specific theory captures will be crucially important

as input to other language tasks.

Perhaps the most common style of structures are Context-Free Grammars

(CFG). A CFG captures knowledge about language by labeling constituents

and specifying in which ways they are capable of combining.

The woman being promoted has won an award
DT NN VBG VBN VBZ VBN DT NN

The woman being promoted has won an award
DT NN VBG VBN VBZ VBN DT NN

NP VP

VP

NP

NP

VP

VP

S

det auxpass
partmod

nsubj

aux
dobj
det

root

Figure 2.1: A sentence parsed with a Context-Free Grammar.
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For our initial discussion we will focus on the analysis in Figure 2.1 as a

demonstration. We start with an eight word sentence and its part-of-speech

(POS) tags:

The woman being promoted has won an award

DT NN VBG VBN VBZ VBN DT NN

DET NOUN VERB VERB VERB VERB DET NOUN

Most NLP systems assume they have access to these tags. Part-of-speech

tags are simply labels which indicate which (morpho)syntactic class a word

belongs to. The labels presented here are from the Penn Treebank [1] (top

row) (which we will discuss in more detail later). A simplification to the

“universal part-of-speech tagset” (UPOS) [2] is included on the bottom row

for ease of exposition. Unless stated explicitly, all results in this thesis are

working over language specific tagsets, but we often use UPOS to easily

convey information and intuition about experimental design.

2.1.1 Part-of-Speech tags

Part-of-speech tags represent basic morphosyntactic information associated

with individual words. Tag sets differ in size and specificity, depending on

the morphology of the language and on decisions made by their designers.

The following are the Penn Treebank tags for our example sentence:

Penn Description UPOS equivalent

DT Determiner DET

NN Noun, singular or mass NOUN

VBG Verb, gerund or present participle VERB

VBN Verb, past participle VERB

VBZ Verb, 3rd person singular present VERB

There are 36 tags [3] in total, not including punctuation, which are mapped

to 7 UPOS tags. As can be seen from this example, the Penn Treebank tags

capture a much finer level of granularity which can prove very important

when making syntactic attachment decisions.

In morphologically rich languages, the word form might capture even more

information as it might denote case, gender, and number. In these cases, the
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designer of the resource must decide at what granularity to stop differenti-

ating the tags in their tagset. In this thesis we will work with a number

of language across language families (e.g. Arabic, Basque, Bulgarian, Chi-

nese, Czech, Danish, Dutch, English, Hebrew, Japanese, Portuguese, Slovene,

Swedish, Spanish...) which range from 12 to >200 tags (see Appendix A for

more details).

Recovering linguistic structure without the use of these informative labels

will be the focus of Chapter 8.

2.1.2 Context-Free Constituency Grammars

Producing a structure like the one in Figure 2.1 requires a number of grammar

rules be specified in advance. For this example those include:

S → NP VP

NP → NP VP

NP → DT NN

VP → VBG VP

VP → VBZ VP

VP → VBN NP

VP → VBN

The grammar denotes which words or groups of words can combine and

labels the resulting structure. For example, the combination of a determiner

(DT) with a noun (NN) results in the creation of a noun phrase (NP). We are

specifying how parts of a sentence interact and labeling those interactions

and incremental derivations. Having the rules of a grammar also defines the

valid sentence of a language.

The rules of the grammar can most easily be read right to left: “An NP

combines with a VP to produce a sentence S”. This corresponds to how

bottom-up parsing is performed. Whenever the right hand side of a rule is

satisfied, we apply the rule to create a new, larger, constituent. This can be

done efficiently with dynamic programming (Cocke-Kasami-Younger: CKY

[4, 5], we discuss this in depth in the next chapter, section 3.3.1). One

common means of deriving a grammar of this form is by reading the rules

from a treebank of parses. A treebank is a large collection of parsed sentences

which have been manually analyzed. From this resource we can read off the

rules of a language’s grammar and we can train a model to apply the rules
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The woman being promoted has won an award
DT NN VBG VBN VBZ VBN DT NN

The woman being promoted has won an award
DT NN VBG VBN VBZ VBN DT NN

NP VP
VP

NP

NP
VP

VP

S

det auxpass
partmod

nsubj

aux
dobj
det

root

Figure 2.2: A sentence parsed with a Dependency Grammar.

in similar proportions or contexts to those in the treebank. While we will

focus most of our discussion of English grammar on the Penn Treebank and

treebanks that are based upon it. It is important to note that its creation

represents only a single domain and a single linguistic theory. While the Penn

Treebank has been foundational, many other treebanks existed at the time

(e.g. Brown [6, 7], London-Lund [8], Lancaster-Leeds [9], and Lancaster-

Oslo/Bergen Corpus [10]1) and many others have been created since.

Unlike in our single sentence example with seven rules, the space of rules

needed to analyze a large body of text is much larger and the array of sub-

structures is more complicated. This is where the strength of a statistical

parser becomes crucial. A supervised parser learns which rules are likely to

be applied in which contexts by mimicking the analyses present in the tree-

bank during training. In this way, the model captures information about not

only which analyses are possible within the grammar of a language but also

which are likely. When treebanks are available, this is a highly efficient and

useful technique.

2.1.3 Dependency Grammars

One type of information that is not easily recovered from a CFG parse tree is

the notion of syntactic headedness. For example, when analyzing a sentence,

it is often useful to identify the subject or object of the verb. This infor-

mation can be annotated and modeled directly in an alternate formalism:

Dependency Grammar [11, 12].

Dependency grammars are based on word-word relations. In particular,

dependency grammar substitutes the phrases and structural categories of a

constituency tree for directed arcs between words and functional categories

as labels [13]. In Figure 2.2 we have a dependency grammar parse of the

same sentence from before.

1http://clu.uni.no/icame/manuals/LPC/LPC.PDF
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In the constituency tree we labeled spans of words and the merger of sub-

structures. They were given names (noun-phrase, verb-phrase, ...) which

indicated how and where they could be used, structurally, to complete a

parse tree. In a dependency grammar, arcs are drawn between words so there

are no non-terminals, but instead all information is carried by the choice of

the arc’s direction and label. Arcs are drawn from heads to dependents.

There are a number of criteria for headedness [14]. For example, a word

may be a dependent because it is an optional word (e.g. modifier) which

can be dropped without affecting the meaning of the sentence. A word may

also be a dependent because it is the argument of another word (e.g. nouns

are arguments of a verb). Unfortunately, the choice of a syntactic head is

difficult, and any annotation standard must make many potentially arbitrary

headedness decisions (auxiliaries vs main verbs, the role of conjunctions, etc).

As dependency grammars will be the main type of treebank against which

we evaluate models in this thesis, several of these annotation decisions will

be discussed at length (Sections 3.1.4 and 7.2.3).

Finally, functional labels are attached to each arc. For example, the labels

mark the subject, woman, as nsubj and the direct object, award, as dobj.

In a dependency treebank there are several dozen such arc labels marking

important distinctions between constructions. Again, a full grammar of how

words or part-of-speech tags can be linked and labeled can be read off of

the set of derivations provided in a treebank. These outline the space of

(word/tag, label) tuples allowed by a language and the frequency of those la-

bels. We will convert many of the predicted structures of our models (Section

3.2.4) into this format for evaluation (Sections 5.5 and 7).

2.1.4 Computational Complexity and Expressivity

Both constituency and dependency grammars are widely used within CL/NLP

and treebanks for training parsers have been constructed in dozens of lan-

guages. As with the choice of part-of-speech tagsets, whose size is an impor-

tant design choice for distinguishing or conflating the linguistic phenomena

of a language, the rules of a grammar encode many more linguistic biases.

What types of constructions to annotate and express are both theoretical lin-

guistic questions about the properties of a language and practical questions

of implementation and modeling. In the computational hierarchy of lan-
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guages and automata, as one moves up the hierarchy from regular grammars

to recursively enumerable, the computational power required to accept the

language moves from finite state automata up to a Turing Machine [15, 16].

Therefore, by choosing to analyze language with a context-free grammar

we are making parsing the grammar easier by bounding our computation to

only requiring pushdown automata (efficiently parseable in O(n3)). Simul-

taneously, we are making linguistic assumptions about the complexity and

expressive power of human language.

The way this additional complexity would be represented in the formalisms

we have seen thus far would be to allow the brackets of the constituency

parse to cross one another, or for the edges of the dependency parse to cross.

Within dependency parsing this is eponymously referred to as non-projective

parsing. We see use cases for this across languages, but most modern parsers

do not try to capture it. A simple example of crossing dependencies hap-

pens in English when analyzing constructions with the word respectively.

How much computational power and expressivity should be captured by a

grammar formalism is still an open question [17, 18]

The red and yellow, apple and banana, respectively

amod amod

In the next chapter we will introduce another, less common, grammar for-

malism: Combinatory Categorial Grammar (CCG). CCG will take the form

of a constituency grammar but will capture non-projective dependencies. It

will be efficiently parseable (O(n6)) but lies slightly outside of context-free,

in a computational class called Mildly Context-Sensitive [19, 20, 21].

2.1.5 Supervised Parsing

In the presence of treebanks we can train models to produce an automatic

syntactic parser. First, the rules of the grammar being read from the training

data define the space of possible parses for a sentence. Second, a model must

be trained to score constituents or arcs in each sentence. In a generative

grammar, like those used in this thesis, we assume that the sentence is gen-

erated by the parse tree, which is itself the outcome of a process of rewrite

rules originating with some initial start symbol ( like S in our grammar).
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More concretely, let us return to our constituency parse from before. Given

that we have a sentence (S), we can define a distribution over the rules

which have S as the left hand side, and randomly draw a right hand side

transformation. In this case, we draw the right-hand side NP VP. We can

say this happens with probability p( NP VP | S ). We can now recurse

down both children with probabilities p( VBZ VP | VP ) on the right and

p( NP VP | NP ) on the left until we reach terminal nodes. Preterminal nodes

are those which emit a word and then no longer recurse. For example, we

might have the grammar produce part-of-speech tags and then have each tag

emit a word, p( promoted | VBN ). In this way we have assigned a probability

to each step of the parse and the observed words. By taking the product

of all of the probabilities of left-hand sides (X) producing right hand sides,

non-terminals or leafs (α) we can compute a joint probability for the parse

tree (T ) and the sentence (~w):

p(~w, T ) =
∏

X→α∈T
p(X → α)

This very simple probability model is referred to as a probabilistic context-

free grammar (PCFG) [22] and forms the basis for many more sophisticated

parsers [23]. Analogous models and processes can be used for dependency

trees, but where a CFG defines rules for how to combine non-terminals (NP,

VP, ... ), dependency grammars specify specify which words can be attached

to which other words.

2.1.6 Evaluating Syntactic Predictions

We have just briefly defined constituent and dependency grammars, and

how a basic probability model can be defined over parses. The goal of creat-

ing syntactic parsers is to predict structures which must then be evaluated

against some human annotated ground truth.

Constituency Within constituency grammars the basic unit is the labeled

constituent. To evaluate parses one first computes the percent of correct

predictions, yields, (C). The yield of a non-terminal is the region of the

sentence it spans. There are two common ways to compute this evaluation

metric: labeled and unlabeled. In both cases the model must predict the

correct yield to increment C, but in labeled evaluation the yield must also
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have the correct non-terminal label predicted to be counted. This number

is then divided by the number of total predicted yields (S) to compute a

precision p = C
S

, and by the total number of ground truth constituents (G)

to compute a recall r = C
G

. Papers then report the precision, p, recall, r, and

harmonic mean (f-score) [24] of the two: f = 2pr
p+r

. This metric is also known

as Parseval [25].

Dependency For dependency grammars we perform an analogous compu-

tation but instead of computing the number of correct yields, we compute the

number of correct arcs (labeled, unlabeled, and undirected) to define C. In

much of this thesis, we will be comparing to dependency trees. A dependency

tree assumes that every word can only be the dependent of one other word

in the sentence. This means the number of arcs predicted and in the gold

truth match (being equal to the number of words in the sentence), making

the precision and recall computations redundant. For this reason, most of

the evaluation will report only a single accuracy number: C
G

. In dependency

graphs (where a word may be the dependent of several heads), we will return

to reporting precision, recall and f-score. Finally, in much of the discussion

of this thesis, the evaluation will be over unlabeled arcs and as such we will

only present directed accuracies (DA) as opposed to the labeled arcs used for

evaluating supervised systems. Directed arcs capture both the pair of words

being linked and which of the two is the head.

2.2 Grammar Induction

We have outlined two common representations of syntactic grammar and

how a treebank is used to train syntactic parsers. The goal of unsupervised

methods is to take tasks, like syntactic parsing, and attempt to predict the

same linguistic structures without access to labeled training data, in this case

the treebank. The desire to learn structure without labeled supervision is not

new, as being able to do so would be a huge boon for our understanding of

language acquisition and allow us to quickly scale NLP to the ∼3,500 living

written languages of the world instead of the few dozen for which data has

been annotated.

Interest in creating a system which performs unsupervised language ac-

quisition dates back several decades and has been worked on continuously
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Table 2.1: Selected Historical Works in Grammar Induction/Estimation

1992 · · · · · ·• Carroll & Charniak: Two Experiments on Learning Probabilistic

Dependency Grammars from Corpora [26]

1996 · · · · · ·• de Marcken: Unsupervised Language Acquisition [27]

1998 · · · · · ·• Yuret: Discovery of Linguistic Relations Using Lexical Attraction

[28]

2001 · · · · · ·• Clark: Unsupervised Language Acquisition: Theory and Practice

[29]

2001 · · · · · ·• Paskin: Grammatical Bigrams [30]

2005 · · · · · ·• Klein: The Unsupervised Learning of Natural Language

Structure [31]

2006 · · · · · ·• Smith: Novel estimation methods for unsupervised discovery of

latent structure in natural language text [32]

2009 · · · · · ·• Cohen & Smith: Shared Logistic Normal Distributions for Soft

Parameter Tying in Unsupervised Grammar Induction [33]

2009 · · · · · ·• Headden III, Johnson, & McClosky: Improving Unsupervised

Dependency Parsing with Richer Contexts and Smoothing [34]

2010 · · · · · ·• Berg-Kirkpatrick & Klein: Phylogenetic Grammar Induction

[35]

2010 · · · · · ·• Blunsom, Cohn & Goldwater: Inducing Tree-Substitution

Grammars [36]

2010 · · · · · ·• Naseem & Barzilay: Using universal linguistic knowledge to

guide grammar induction [37]

2011 · · · · · ·• Boonkwan & Steedman: Grammar Induction from Text Using

Small Syntactic Prototypes [38]

2013 · · · · · ·• Spitkovsky: Grammar Induction and Parsing with

Dependency-And-Boundary Models [39]

2013 · · · · · ·• Christodoulopoulos: An Iterated Learning Framework for

Unsupervised Part-of-Speech Induction [40]
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since then (Table 2.1). The goal is to explore the limits of learnability of

structure from text. Of particular interest to us is work that follows from

and expands on Klein 2005 [31]. The task as defined by Klein and Manning

[41] (extending the paradigms of [28, 30, 26]) entails predicting unlabeled

dependency arcs between words.

The goal of grammar induction should be to create a cog which produces

linguistic structures of equal utility to those produced by supervised syntactic

parsers. Doing so has largely been assumed impossible because reproducing

the structures requires knowledge of the linguistic theory used to generate

those structures and the space of the grammar used in the annotation. If

linguistic structures are truly that idiosyncratic it implies there is little if any-

thing truly universal about language in our representations. The literature’s

response to this issue has been to produce unlabeled representations which

lack much of the detail present in labeled structures produced by supervised

parsers.

Klein and Manning’s Constituent-Context Model (CCM) attempts to learn

constituency bracketings (unlabeled and without crossing), and their Depen-

dency Model with Valence (DMV) learns to produce an unlabeled depen-

dency tree. In both cases the phrase labels for constituents or the arc labels

for dependencies have been discarded. These labels are arbitrary symbols

created as part of an annotation standard, and are therefore not recover-

able in an unsupervised manner. This drastically simplifies the learning and

parameter space of the models.

The woman being promoted has won an award
DT NN VBG VBN VBZ VBN DT NN

The woman being promoted has won an award
DT NN VBG VBN VBZ VBN DT NN

NP VP
VP

NP

NP
VP

VP

S

det auxpass
partmod

nsubj

aux
dobj
det

root

Correct Output of a Supervised Parser

⇓

The woman being promoted has won an award
DT NN VBG VBN VBZ VBN DT NN

The woman being promoted has won an award
DT NN VBG VBN VBZ VBN DT NN

Correct Output of an Unsupervised Parser

Within this task definition, the literature generally assumes that every

word depends on a single head (the source of the arrow pointing to it), and
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that with the addition of a root node this structure forms a tree. Performance

can therefore be computed as a simple prediction accuracy over word pairs

(Section 2.1.6).

In the first half of this thesis, we will design models for predicting these

unlabeled structures to follow the literature’s evaluation standard. Unfortu-

nately, it should be obvious from the figure above that a tremendous amount

of useful linguistic information is lost when labels are removed. Further,

since most NLP systems that use a parser assume the presence of these la-

bels as features which help classify important distinctions in a task, we also

limit the utility of grammar induction by changing the definition of parsing.

In particular, if unsupervised parsers are treated as a cog to be substituted

into NLP systems when treebanks are unavailable, the representation and

features produced will be greatly impoverished.

The second half of this thesis addresses this concern by introducing a

method for automatically producing labeled dependencies, evaluating in-

duced parses on the same metric as supervised parsers, and showing how

unsupervised labels can be used in downstream tasks.

2.2.1 Methods

Since the work of Klein and Manning, a number of approaches have extended

their models or introduced completely novel dependency grammar induction

systems. These approaches have provided new insight into smoothing [34],

more sophisticated priors, constraints, curricula, and initialization [33, 42,

43, 44, 45, 46], and looked at the effects of using additional data from the

web [47]. Given the weak performance of many approaches, methods for

injecting additional supervision [37, 38, 48, 35] have also been introduced

and have proven very effective.

We provide here a brief overview of some of the history of approaches and

insights in the literature. Early work, like that of Klein and Manning, focused

on inducing grammars in English, Chinese and German for short sentences

(at most 10 words without punctuation). Much of the work grew more narrow

by honing in on English for evaluation before broadening to other languages.

The last decade witnessed a transition to two dozen languages with varying

amounts of data and from short sentences of length 10, to 20, 40, and finally

to full set of sentences in the test set. The exact way to evaluate is still not
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settled (Section 2.2.3).

Spitkovsky et al. have produced a number of papers in this space. Their

early work demonstrated improved DMV performance when trained with a

curriculum [49] of short sentences before longer ones. They then attempted

to control for ambiguity in longer sentences by using Viterbi-EM [50], which

only updates the model with counts from the best model prediction. As the

average sentence in the Penn Treebank is on the order of 40 words, there

is a tremendous amount of data (and ambiguity) in these sentences. To

further inform their model, they came up with mechanisms for constraining

the parse based on its punctuation [51]. Finally, plagued by local optima,

they introduced techniques for random restarts and model recombination [45]

to circumvent the non-convex nature of the learning problem.

Headden et al. [34] introduced the Lexicalized Extended Valence Gram-

mar which lexicalizes the DMV models and includes a valence term which

captures subcategorization information and models the proximity of a word

to the head. Cohn et al. [36] learn a non-parametric Bayesian model of

tree-substitution grammar that is biased towards a sparse grammar with

shallow productions. Underlying the model is a base distribution computed

over CFG trees derived from the DMV model.

Another approach introduced by Mareček and Žabokrtský is to compute

the primacy of different word classes through a score they call “reducibil-

ity” [47], which computes how often a tag can be dropped from a sequence

without the sequence becoming ungrammatical. This provides a measure of

the importance of a given word with the insight that, for example, verbs are

more essential to a sentence than nouns, and nouns are more necessary than

adjectives. They followed up with work to better model the valence of words

[46] and function words [52]. They were also the first to demonstrate the

utility of working over larger corpora from the web. This is perhaps in part

because their model is very data-hungry.

2.2.2 Adding Supervision to Grammar Induction

Several approaches have also explored incorporating additional supervision.

Naseem et al. [37] demonstrate the effectiveness of universal linguistic knowl-

edge. Their model has access to 13 soft universal dependency constraints:
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Root → Auxiliary Noun → Adjective Verb → Noun

Root → Verb Noun → Article Verb → Pronoun

Preposition → Noun Noun → Noun Verb → Adverb

Adjective → Adverb Noun → Numeral Verb → Verb

Auxiliary → Verb

For example, the rule “Noun→ Adjective” will bias the model towards treat-

ing adjectives as the dependant of nouns. They only impose these rules in

expectation. In this way, specific analyses can violate the rules to complete a

parse, but the analysis of the complete corpus will, on average, exhibit these

attachment preferences. Their work experiments with how performance is

affected as a function of how strongly these biases are imposed. Naseem et

al. also evaluate a variant of their system that uses a number of highly effec-

tive English-specific heuristics at test time. This is a good demonstration of

using limited annotation for strong performance gains. In particular, when

evaluating directed attachments on short English sentences they show how a

poorly performing system with no rules can go from a directed accuracy of

24.9 to 71.9 with a handful of universal rules and 73.9 with English specific

ones.

Boonkwan et al. [38] demonstrate a simple way to get these rules for a

language and encode them in a categorial grammar (see Chapter 3). They do

so via a 30 question survey that covers basic facts about the language. The

results of this survey determine the inventory of lexical types for the language,

which are then mapped to specific part-of-speech tags by the experimenter to

create a custom language specific lexicon. In this way, they model a realistic

annotation environment where a linguist sits down with grammatically savvy

native speaker for a short questionnaire. It is possible that their approach

could be further extended to ease the burden on the participant. They show

nice results for how their performance changes as a function of the questions

answered (40.2 → 74.8)

Kuzman et al. [48] use a less direct source of supervision by exploiting

bitext projections as constraints. Relatedly, Berg-Kirkpatrick et al. [35] use

biases from the phylogenetic history of languages to inform sharing of model

parameters across languages.
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2.2.3 Evaluation and Idiosyncrasies

Coordination, verb chains, and relative clauses are just a few of the many

common but difficult constructions for a parser to analyze. Specifically, all of

them require knowledge of the specific annotation standard of the treebank

being used for evaluation, as their analyses differ greatly from one annotation

standard to the next.

When training a supervised parser, the model has access to the correct

analyses in the training data. These same annotation standards, and largely

the same grammar, were used for annotating the test data as well. For this

reason, it is generally safe to assume that modeling the training data well will

correlate with good and consistent predictions on the heldout test data. In

grammar induction, the model is presented with text in a language and must

predict structures without having seen any examples or annotation guide-

lines. This means that we have little guarantee that the structures it finds

will match the annotation of a test set. This is particularly problematic for

constructions whose annotation is inherently ambiguous. One such example

is coordination. In our experiments, we will look at over a dozen languages

and find five different annotations standards for conjunction.

In a constituency treebank, two conjoined nouns might be simply repre-

sented by a ternary rule: NP→ NP conj NP. In fact, our system will produce

structures of this form, but we will need to convert this ternary relation into

dependencies for evaluation. We have identified five main styles of conjunc-

tion in our data (Figure 2.3), although several corpora distinguish multiple

types of coordinating conjunctions which use different styles (not all shown

here). These all differ from how CCG handles coordination (Section 3.1.4).

This is one particularly easy annotation to spot which is completely arbitrary,

and our system will have to be instructed as to how to produce dependency

arcs based on the treebank being analyzed.

Alternate Metrics

A direct comparison between different dependency treebanks, dependencies

produced by CCG [53, 54], or the output of induction systems is difficult

and inconsistent, since dependency grammars allow considerable freedom in

how to analyze specific constructions such as verb clusters (which verb is

the head?), prepositional phrases and particles (is the head the noun or the
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Ar, Eu, Cs, Nl,
WSJ, Ch, He Da, He Es, Bg, De, Pt Sv, Sl Ja

noun conj noun noun conj noun noun conj noun noun conj noun noun conj noun

Figure 2: In the treebanks used for evaluation different standards exist for annotating coordination. While
not exhaustive, this table demonstrates five of the most common schemes used in the literature. Syntactically
these are identical and traditionally CCG draws arcs only to the arguments without attaching the conjunction.
For the purposes of comparison with the literature we have implemented these five translation schemes.
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BH (Bisk and Hockenmaier, 2012a) and BC (Blunsom and Cohn, 2010), in addition to a max over all other
participants. We trained on length 15 data (punctuation removed), including the test data as recommended
by the organizers. The last row indicates the difference between our best system and the competition.
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A side effect of the hyperparameters is that their
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This may be one of the reasons for the high vari-
ance seen in the four settings tested, although we
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and not random, consecutive runs do not introduce
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7.2 Comparison with systems that capture
linguistic constraints

Since our induction algorithm is based on the knowl-
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modify adjectives or verbs, etc.) have no equivalent
in our system. Although our system has less prior
knowledge, it still performs competitively.

On the WSJ, Naseem et al. demonstrate the im-
portance and effect of the specific choice of syntactic
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not exhaustive, this table demonstrates five of the most common schemes used in the literature. Syntactically
these are identical and traditionally CCG draws arcs only to the arguments without attaching the conjunction.
For the purposes of comparison with the literature we have implemented these five translation schemes.

Arabic Danish Slovene Swedish Dutch Basque Portuguese WSJ Childes Czech
# Tokens 5,470 25,341 54,032 61,877 78,737 81,345 158,648 163,727 290,604 436,126
# Tags 20 24 36 30 304 14 23 36 69 62

PA
SC

A
L BC 60.8/58.4 44.7/39.4 62.6/57.9 63.2/56.6 51.8/52.0 53.0/48.9 52.4/50.2 68.6/63.3 47.4/46.1 47.9/43.1

Max 67.2/66.8 60.1/56.0 65.6/61.8 72.8/63.4 51.1/47.6 53.7/47.8 67.0/61.8 71.2/64.8 56.0/54.5 58.3/54.4
BH 41.6/43.7 46.4/43.8 49.6/43.9 63.7/57.0 49.7/43.6 45.1/39.6 70.8/67.2 68.2/59.6 61.4/59.8 45.0/38.9

T
hi

sw
or

k

MLE 41.6/42.9 43.4/39.2 46.1/41.1 70.1/59.7 52.2/47.2 29.6/26.5 62.2/59.7 59.5/52.4 53.3/51.9 50.5/45.8
HDP0.0 48.0/50.0 63.9/58.5 44.8/39.8 67.6/62.1 45.0/33.9 41.6/39.1 71.0/66.0 59.8/52.9 56.3/55.2 54.0/49.0
HDP1.0 45.6/47.1 45.7/42.3 53.9/46.9 74.5/66.9 58.5/54.4 50.1/44.6 65.1/60.6 64.3/56.5 71.5/70.3 55.8/50.7
HDP1.5 49.6/50.4 58.7/54.4 53.2/48.2 74.3/67.1 57.4/54.5 50.6/45.0 70.0/64.7 65.5/57.2 69.6/68.6 55.6/50.3
HDP2.0 66.4/65.1 56.5/49.5 54.2/46.4 71.6/64.1 51.7/48.3 49.4/43.3 76.3/70.5 70.7/62.9 74.1/73.3 54.4/48.5

+/� -0.8/-1.7 +3.8/+2.5 -11.4/-15.4 +1.7/+3.5 +6.7/+2.4 -3.1/-3.9 +5.5/+3.3 -0.5/-1.9 +12.7/+13.5 -2.5/-3.7

Table 1: A comparison of the basic Argument model (MLE) and four hyper-parameter settings of the HDP-
CCG against two syntactic formalisms that participated in the PASCAL Challenge (Gelling et al., 2012),
BH (Bisk and Hockenmaier, 2012a) and BC (Blunsom and Cohn, 2010), in addition to a max over all other
participants. We trained on length 15 data (punctuation removed), including the test data as recommended
by the organizers. The last row indicates the difference between our best system and the competition.

global category distribution to influence each of the
more specific distributions. Further, it provides a
very simple knob in the choice of hyperparame-
ters, which has a substantial effect on performance.
A side effect of the hyperparameters is that their
strength also determines the rate of convergence.
This may be one of the reasons for the high vari-
ance seen in the four settings tested, although we
note that since our initialization is always uniform,
and not random, consecutive runs do not introduce
variance in the model’s performance.

7.2 Comparison with systems that capture
linguistic constraints

Since our induction algorithm is based on the knowl-
edge of which POS tags are nouns and verbs, we
compare in Table 2 our system to Naseem et al.

(2010), who present a nonparametric dependency
model that incorporates thirteen universal linguistic
constraints. Three of these constraints correspond
to our rules that verbs are the roots of sentences and
may take nouns as dependents, but the other ten con-
straints (e.g. that adjectives modify nouns, adverbs
modify adjectives or verbs, etc.) have no equivalent
in our system. Although our system has less prior
knowledge, it still performs competitively.

On the WSJ, Naseem et al. demonstrate the im-
portance and effect of the specific choice of syntactic
rules by comparing the performance of their system
with hand crafted universal rules (71.9), with En-
glish specific rules (73.8), and with rules proposed
by Druck et al. (2009) (64.9). The performance of
Naseem et al.’s system drops very significantly as
sentence length (and presumable parse complexity)

Figure 2.3: In the treebanks used for evaluation, different standards exist for
annotating coordination. While not exhaustive, this table demonstrates five
of the most common schemes used in the literature. Syntactically these are
identical and traditionally CCG draws arcs only to the arguments without
attaching the conjunction. For the purposes of comparison with the literature
we have implemented these five translation schemes.

preposition/particle?), subordinating conjunctions (is the conjunction a de-

pendent of the head of the main clause, and the head of the embedded clause

a dependent of the conjunction, or vice versa?), and this is reflected in the

fact that the treebanks we consider often apply different conventions for these

cases. Although remedying this issue is beyond the scope of this work, these

discrepancies very much hint at the need for a better mechanism to evaluate

linguistically equivalent structures or treebank standardization. One such

approach was that proposed by Schwartz et al. [55] who introduced Neutral

Edge Detection (NED) as a metric that tried to smooth out these decisions.

Unfortunately, it also eliminates useful and linguistically important distinc-

tions making it unsuitable for our purposes. Another approach is to simply

evaluate undirected edges. In this way, head decisions are ignored but the

structure of the tree maintained. Unfortunately, again this simple approach

does not remedy issues like coordination but also discards important and

useful information from the tree.

2.2.4 Data Splits and Head-Finding rules

An additional source of ambiguity when interpreting results in the literature

is differences in which data the system was trained or tested on, and the

style of head-finding rules that were used for evaluation, even when the same
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corpus was used. Head-finding rules are a means of converting constituency

trees into dependencies. A number of them exist in the literature [56, 57,

58, 59] for the Penn Treebank and they make different decisions about how

arcs should be drawn for a given constituent. We have collected a few of the

experimental setups in Table 2.2. The Penn Treebank also has two forms,

the original annotated corpus and a newer fix to the treebank to incorporate

internal NP structure [60]. Whether this fix is included by various approaches

is unclear. When compiling this table, we first looked for details in data

sections of each paper. When details were missing we trusted they used the

setup of whomever they were comparing against. Unfortunately, even if the

data section specifies what was done many comparisons are inconsistent.

Finally, while Collins [57]2 is often cited as the source of certain head

finding rules, these rules originated with Magerman (1995) [56], and there

are a number of software implementations of the conversions which differ in

some of their details. It is therefore unclear when a paper claims to be using

Collins’ head-finding rules if they are implementing their own, using Nivre’s

[61]’s Penn2Malt3 conversion which is actually from Yamada and Matsumoto

[58] or another system4. This complicates evaluation further.

A final dimension to this problem is what sentence lengths were used dur-

ing training and evaluation. The community appears to be converging to

evaluating on all sentence lengths. The best demonstration of how much of

an effect the choice of head-finding rules and amount of data might have on

a system is Spitkovsky et al. ’s work [45] shown in Table 2.3 we see the per-

formance of their system when trained on two different subsets of the same

corpus and evaluated on different annotations of the same corpus. The train-

ing and testing sections are denoted in the second and third column. The

style of head-finding rules is in the first column and the model’s performance

is the last two. DA stands for Directed Attachment. Here, they report what

percent of the arcs in the training data they correctly predict. DA10 is an

accuracy computed on only short sentences with at most 10 words (ignoring

punctuation), and DA∞ is computed on the full test-set. When looking at

the full test set we see how the same model has a six point performance

difference between the two setups. The performance might slip further, if

2http://www.cs.columbia.edu/~mcollins/papers/heads
3http://stp.lingfil.uu.se/~nivre/research/Penn2Malt.html
4e.g. http://nlp.cs.lth.se/software/treebank_converter/
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Year Paper Train Dev Test Head rules

2004 Klein & Manning[41] 00-24 00-24 Collins
2007 CoNLL 2007[62] 02-11 ⊂23 J&N
2009 Cohen & Smith[33] 02-21 22 23 Collins
2009 Headden III et al. [34] 02-21 22 23 Collins
2010 Berg-Kirkpatrick et al. [35] 02-21 02-21 Collins
2010 Blunsom & Cohn[42] 02-21 22 23 Collins?
2010 Naseem & Barzilay[37] 02-21 02-21 Collins
2011 Boonkwan & Steedman[38] 02-22 23 Collins
2012 PASCAL Shared Task[63] 00-24 23 J&N3

2013 Spitkovsky & Jurafsky[45] 00-24 23 Collins
02-11 ⊂23 J&N

Table 2.2: We have selected several key pieces of work in the literature to
demonstrate the lack of consensus on how to evaluate grammar induction
within English. Collins refers to the Collins head-finding rules [64] and J &N
to Johansson & Nugues [59]. The final two lines both refer to the same paper
which contains two evaluations. Here, we use a subset to denote that an only
part of section 23 was used for evaluation.

Train Test DA10 DA∞
Collins 00-24 23 72.0 64.4
J&N 07 02-11 ⊂23 75.0 58.2

Table 2.3: Spitkovsky et al. ’s [45] reported results on WSJ section 23.

evaluated on the Johansson & Nugues head-finding rules with NP internal

structure. Other older results on that difficult setup include Blunsom & Cohn

[42], who perform at a directed attachment of 56.0, which may be an equiv-

alently good model but has not been trained and tested on the same data.

This wild variation leads to some difficulty in determining the true state-of-

the-art on the task of grammar induction. We will try and provide as fair

comparisons as possible throughout the thesis. In particular, in Chapter 7

we will perform three different English performance evaluations to attempt

to compare to most of the available literature.

3Includes the internal NP structure of Vadas and Curran (2007)
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Chapter 3

Combinatory Categorial
Grammars

Combinatory Categorial Grammar [65, 66, 67, 68, 53] is a linguistically

expressive, lexicalized grammar formalism which associates rich syntactic

types with words and constituents. These rich representations and their

functional nature, discussed below, allow for a transparent mapping from a

word’s syntactic role to one or more semantic interpretations.

3.1 Formalism

3.1.1 Categories

The basic vocabulary of the grammar assumes two atomic types: S (sen-

tences) and N (nouns). Complex types are of the form X/Y or X\Y and

represent functions which combine with an immediately adjacent argument

of type Y to yield a constituent of type X as the result. The slash indi-

cates whether the Y precedes (\) or follows (/) the functor. The lexicon

pairs words with categories and is of crucial importance since it captures the

only language-specific information in the grammar. An English lexicon may

contain entries such as:

N : {he, girl , lunch, ...} N/N : {good , the, eating , ...}
S\N : {sleeps, ate, eating , ...} (S\N)/N : {sees, ate, ...}
S\S : {quickly , today ...} (S\N)/(S\N) : {good , the, ...}

Work in this chapter was first published in Y. Bisk and J. Hockenmaier, “Probing the
linguistic strengths and limitations of unsupervised grammar induction,” in Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), Beijing,China, July 2015. [133] and is reprinted here with permission by
the copyright holder.
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While the set of categories is theoretically unbounded, the inventory of

lexical category types is in practice assumed to be finite and of a bounded

maximal arity (typically 3 or 4). The arity of a category is simply the num-

ber of arguments it takes. Above, the intransitives, sleeps : S\N, takes one

argument while the transitives, sees : (S\N)/N, take two.

3.1.2 Combinatory rules

Categorial grammar rules are defined as schemas over categories (where X,

Y, Z etc. are category variables and | ∈ {\, /} is a slash variable), and are

usually given in a bottom-up manner. All variants of categorial grammar

[65, 66] use the basic rule of forward (>) and backward (<) application,

which specifies that a functor X|Y can combine with an adjacent argument

Y to form a new X:

X/Y Y ⇒ X (>) Forward Application

Y X\Y ⇒ X (<) Backward Application

(C)CG parses are typically written as logical derivations. A simple example

of forward application in English is the attachment of a determiner The to a

noun man. Backward application is used by the verb ate to take its subject

man:

The man ate

N/N N S\N
>

N
<

S

CCG includes additional rules: in function composition (the B combinator

of Curry and Feys [69]), the arity of the secondary functor can vary from 1

to a fixed upper limit n. To unify our notation, we will denote application

as a functor of arity 0 (B0) below when comparing a grammar’s expressivity.

X/Y Y ⇒ X >B0 Forward Application

X/Y Y|Z ⇒ X|Z >B1 Forward Composition

Y X\Y ⇒ X <B0 Backward Application

Y|Z X\Y ⇒ X|Z <B1 Backward Composition
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If the functor is composing into a category with n arguments, we refer to

this as generalized composition:

X/Y Y|Z1|...|Zn ⇒ X|Z1|...|Zn >Bn Forward

Y|Z1|...|Zn X\Y ⇒ X|Z1|...|Zn <Bn Backward

In practice, n rarely takes a value greater than three in the literature,

which will also be the limit of what we explore in this thesis. When discussing

specific rules, we will instantiate n appropriately. Two cases of generalized

composition are presented below for where an adverb is modifying a transitive

and ditransitive verb:

S/S (S\N)/N ⇒ (S\N)/N >B2

quickly(S) ate(N1,N2) quickly(ate(N1,N2))

S/S ((S\N)/N)/N ⇒ ((S\N)/N)/N >B3

quickly(S) took(N1,N2,N3) quickly(took(N1,N2,N3))

Finally, when the directionality of the slashes does not match categories

may still compose and this is denoted as (forward/backward) crossing com-

position.

X/Y Y\Z ⇒ X\Z (>B1
X) Forward Crossing

Y/Z X\Y ⇒ X/Z (<B1
X) Backward Crossing

Just as before, the functors are the left and right categories for forward and

backward crossing composition respectively. This is easy to see because the

functor must have an argument which matches the second category’s return

type (bolded here).

3.1.3 Derivations

The combinators directly control the expressivity of the grammar (the space

of allowed constructions) and its ambiguity. For example, in the following

sentence with a ditransitive, the verb takes three arguments, and the adverb

would like to combine with it to form quickly took.

I quickly took her home

N S/S ((S\N)/N)/N N N
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To do so with forward composition >B1 requires the verb first to consume

both of the arguments to its right, so there is only an intransitive verb S\N
remaining. >B1 is then sufficient to attach the adverb to the verb, as the

adverb’s argument, the (forward) argument S of S/S, can take the return type

of the intransitive, the S of S\N, by only consuming the innermost atomic S:

I quickly took her home

N S/S ((S\N)/N)/N N N
>

(S\N)/N
>

S\N
>B1

S\N

In contrast, with arity three generalized composition (>B3) the modifier

can recurse through three arguments in search of its argument to attach

immediately:

I quickly took her home

N S/S ((S\N)/N)/N N N
>B3

((S\N)/N)/N

This additional power is both a blessing and a curse. In these examples, the

additional expressivity creates ambiguity in the grammar without increasing

expressivity. Specifically, the ability to combine quickly with took in these two

different derivations does not increase the number of semantic interpretations

of the sentence. This power will become necessary when discussing non-

standard word order.

he ate quickly the lunch he bought

N (S\N)/N S\S N
<B2
×

(S\N)/N

For example, in this sentence quickly must combine with ate before any of

the verb’s arguments (subject and object) can be taken. Because the verb is

transitive, having two arguments, we require arity two composition. Specifi-

cally, we require backwards crossing composition (<B2
X) in this example.

Additionally, in these examples we see two different types of dependency

relations between words or constituents [11] which CCG distinguishes ex-

plicitly: in a head-argument relation, the head X|Y (e.g. S\N) takes its
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dependent Y (N) as an argument, whereas in a head-modifier relation, the

modifier X|X (N/N) takes the head X (N) as an argument. One of the roles

of composition in CCG is that it allows modifiers such as adverbs to have

generic categories such as S\S, regardless of the verb they modify.

CCG also includes a unary type-raising rule, which reverses the relation-

ship between functors and arguments, and allows Y (which may be the ar-

gument of X\Y) to turn into a functor that takes X\Y as an argument and

returns X:

Y ⇒ X/(X\Y) ( >T) Forward Type-Raising

Y ⇒ X\(X/Y) ( <T) Backward Type-Raising

The category X\Y or X/Y is generally restricted to be of a type that also

occurs in the lexicon of the language [53]. Although type-raising Y followed

by application of the type-raised argument to the original functor X\Y is

equivalent to applying the functor itself (and we, therefore, disallow type-

raised categories to apply to other categories to reduce the number of spurious

ambiguities), type-raising and composition act together to capture non-local

dependencies which arise through extraction or coordination, e.g.:

the man that I saw

N (N\N)/(S/N) N (S\N)/N
>T

S/(S\N)
>B1

S/N
>

N\N
<

N

While ambiguity is an inherent component of syntactic parsing, we want

the model only to have to decide between unique semantic interpretations of

the sentence. In contrast, the spurious ambiguities introduced by type-raising

add derivations to the parse forest without adding new semantic analyses.

One such derivation is presented below, which uses type-raising unnecessarily.

The man ate quickly

N/N N S\N S\S
> <B1

N S\N
>T

S/(S\N)
>

S

25



If spurious ambiguities can be restricted or removed, it significantly reduces

the size of the parse forest and in turn makes learning a parsing model easier.

We constrain the use of type-raising with a CCG normal form (Section 3.3.2),

and we analyze the benefits to training in Section 7.2.1.

3.1.4 Coordination

Finally, for coordination we assume a special ternary rule (following CCG-

bank [70]) that is binarized as follows:

X X[conj] ⇒&1 X (&1)

conj X ⇒&2 X[conj] (&2)

In coordination, CCG will allow us to extract the argument role of every

conjunct. Below we demonstrate how the syntactic parse enables us to cap-

ture this argument-filling information about predicates. Currently, there is

no work in the unsupervised grammar inductin literature that can recover

the same style of information from dependency or constituency trees.

I saw and she heard the explosion

N (S\N)/N conj N (S\N)/N N
>T >T

S/(S\N) S/(S\N)
>B1 >B1

S/N S/N
<Φ>

S/N
>

S

This sentence contains two predicates: saw and heard. These share an

object but have different subjects. The ternary subject rule allows us to

extract the semantics of both predicates and conjoin them:

saw′(I, explosion) ∧ heard′(she, explosion)

We will discuss semantics further in the next section.

Another option for representing coordination is a category of the form

(X\X)/X for conjunctions. This seemingly simpler (non-ternary) treatment,

requires introducing complex categories (e.g. ((S/N)\(S/N))/(S/N)) to merge
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the two transitive verbs. Another category would be required for ditransitive

verbs, another for nouns, another for adjectives, and so forth. This leads

to a proliferation of otherwise unnecessary categories. Additionally, its use

causes us to choose one verb (the left) to serve as the “main” verb, dropping

the argument link from heard to explosion and breaking the clean predicate-

argument structure of the CCG derivation.

The corresponding derivation is as follows:

I saw and she heard the explosion

N (S\N)/N ((S/N)\(S/N))/(S/N) N (S\N)/N N
>T >T

S/(S\N) S/(S\N)
>B1 >B1

S/N S/N
>

(S/N)\(S/N)
<

S/N
>

S

We will discuss how these choices manifest in dependency structures in

Section 3.2.2.

3.1.5 Semantics

A fundamental difference between CCG and other formalisms is its trans-

parent syntax-semantics interface. CCG derivations arise from categories

combining via application and composition. This is only possible because

the categories are themselves functions with simpler categories as arguments

and results.

This functional representation of the sentence allows for capturing the

predicate-argument structure of language, which can be exploited for seman-

tic tasks. In particular, each CCG category can be converted to a logical

representation [71], syntactic parses have been used to construct ungrounded

semantic parses [72] (Chapter 9), and semantic role-labeling labels corre-

spond cleanly to the arc labels of CCG [73].

Lambda Calculus [74, 75, 76] is a common semantic representation for

defining logical predicates, variables and meaningful ways in which they can

combine. The full representation has equivalent computational power to

Turing Machines [77], but we use it here simply as glue for constructing

27



logical representations. We will briefly work through how an example CCG

derivation aligns with lambda calculus β-reductions.

In the following sentence,

John saw and Mary heard the explosion

there are two words to which we attach semantic predicates, and treat treat

nouns as semantic constants:

word CCG Category Semantics

saw (S\N)/N λy.λx.saw ′(x, y)

heard (S\N)/N λy.λx.heard ′(x, y)

Lambda calculus is defined in terms of variables, abstraction and appli-

cation. Here we are assuming the variables x and y which have yet to take

on any meaning. Second, we also have abstractions (anything of the form

λx.f(x)). Finally, application is the process of applying a function to an

input.

In function application (also called β-reduction), a lambda-abstraction

(function) λx.f is applied to an argument a. β-reduction returns a copy

of f in which all (free) occurrences of the variable x are replaced by a:

Application:

(λy.λx.saw ′(x, y))(the explosion) → λx.saw ′(x, the explosion)

Throughout a CCG derivation, operations like application and composi-

tion correspond to predicates taking argument. In this way, the syntactic

operations correspond to lambda calculus operations (β-reduction). It is im-

portant to note that every operation we perform is only binary in the parse,

but the underlying predicates are n-ary functions. The ability to break up

the process by decomposing a function such that each argument is satisfied

individually (n binary operations to fill every one of the n arguments in a

function) is made possible by currying [69].

This sentence encodes two events, a seeing event and a hearing event which

are built during the syntactic derivation (Figure 3.1):

saw ′(John, the explosion) ∧ heard ′(Mary , the explosion)
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John : John saw :λy1λx1 saw′(x1, y1) and : and Mary : Mary heard :λy2λx2 heard ′(x2, y2) the explosion : the explosion

N (S\N)/N conj N (S\N)/N N
>T >T

S/(S\N) S/(S\N)
>B1 >B1

S/N : λy1 saw ′(John, y1) S/N : λy2 heard ′(Mary , y2)
<Φ>

S/N : λy saw ′(John, y)∧ heard ′(Mary , y)
>

S : saw ′(John, the explosion)∧ heard ′(Mary , the explosion)

Figure 3.1: A CCG derivation builds a logical representation of the text.

If the corresponding first-order logic (FOL) predicates are provided to

words and categories, then a logical representation, useful for a downstream

task, can be constructed using the procedure above [78, 79, 80, 81, 82, 83].

Alternatively, by following the procedure above, with dummy predicates, the

semantics interface of CCG can build a generic logical representation, that

does not correspond to a particular task/environment, but does isolate the

sentence’s semantics. In Chapter 9, we will demonstrate how the resulting

representation, which we will call “ungrounded semantics”, can be grounded

to database semantics for tasks like information extraction.

3.2 Dependencies and CCG

Dependency Grammars make the simplifying assumption that every word

can only be the dependent of exactly one other word. The choice of how to

define headedness is treebank dependent. By defining dependencies to hold

between functors and their arguments, CCG avoids making potentially arbi-

trary headedness decisions and does not require words be only the dependent

of one other word. CCG predicate-argument dependencies were introduced

by Clark et al. (2002) [54] and have become the basis for evaluating CCG

based parsers [84, 85].

Relying on predicate-argument structure alleviates the need to make po-

tentially arbitrary decisions about the head of a given constituent. It also

often leads to producing DAG structures in lieu of trees (e.g. Section 3.2.2).

3.2.1 Basic Predicate-Argument Dependencies

In particular, for every argument-taking lexical category we trace through

the derivation to find which word filled its argument slot. This argument-

taking lexical category is then used as the label for the arc, supplemented by

the slot being filled. We can see this in the following parse:
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I saw her from afar

N (S\N)/N N (S\S)/N N
> >

S\N S\S
<

S
<

S

By tracing through the derivation, we keep track of each argument and

when it is filled. For example, let us look at just the two words saw her. Here

saw takes her as an argument. In particular, saw has the category (S\N)/N

which has two argument slots. The inner-most N is the first argument and

the outermost is the second. Since the second slot is being filled we draw

an arc from the predicate (saw) to its argument (her) and label it with the

predicate’s category, (S\N)/N, and which slot, 2, is being filled. Once we

repeat for every word in the sentence we can produce the following graph:

I     saw     her     from     afar
(S\N)/N Arg1 (S\N)/N Arg2

(S\S)/N Arg1

(S\S)/N Arg2

Or, if we format these arcs in a table, we can read them off as follows:

Dependent Head Label Slot

I saw (S\N)/N 1

her saw (S\N)/N 2

her from (S\S)/N 1

afar from (S\S)/N 2

One thing to note is that lexical categories are used to label the arcs, so

no other category introduced during the derivation will affect the labels. In

particular, we can see this with type-raising. With coordination we discussed

the use of type-raising:

I saw and she heard the explosion

N (S\N)/N conj N (S\N)/N N
>T >T

S/(S\N) S/(S\N)
>B1 >B1

S/N S/N
<Φ>

S/N
>

S
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With the exception of scrambling [86], the effect of type-raising is to change

the order in which the arguments are filled but not which word fills which

argument slot. By labeling the dependencies with the lexical category we will

get the same predicate argument structures with type raising as we would if

we were analyzing two simple sentences: I saw the explosion and she heard

the explosion. The full set of labeled dependencies are as follows:

Dependent Head Label Slot

I saw (S\N)/N 1

she heard (S\N)/N 1

explosion the N/N 1

explosion saw (S\N)/N 2

explosion heard (S\N)/N 2

Evaluation metrics for supervised CCG parsers [54] measure labeled f-score

(LF1) of these dependencies (requiring the functor, argument, lexical cate-

gory of the functor, and slot of the argument to all match). A second, looser,

dependency evaluation which measures unlabeled, undirected dependency

scores (UF1) is often also performed. The third standard CCG evaluation

metric is supertagging accuracy [87], which simply computes how often a

model chooses the correct lexical category for a given word. This is useful

as the correct category is a prerequisite for recovering the correct labeled

dependency.

The reason both undirected-unlabeled dependencies as well as directed-

labeled dependencies are traditionally evaluated, because of the argument-

adjunct distinction of prepositions. In CCGbank, prepositions can be given

the PP category to denote they should act as arguments to the verb instead of

modifiers. We will not discuss this at length, but the distinction is illustrated

by the following two analyses:

She walked with him

N S\N (S\S)/N N

She walked to the store

N (S\N)/PP PP/N N

We see that the argument analysis means the verb takes an additional

PP (to) argument, rather than being modified by with: (S\S)/N. Confusing

these analyses produces not only the wrong label but also the wrong head di-

rection. Undirected-unlabeled dependencies will not penalize this distinction

as both analyses draw an arc between the preposition and the verb.
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For those familiar with CCGbank, we should note that our discussion of

prepositions attaching to the verb phrase has used the category (S\S)/N,

while CCGbank uses ((S\NP)\(S\NP))/NP. This category allows for the

preposition to apply to the verb before it takes a subject argument. The

category’s first argument though is not filled and we will discuss simplifying

this complex category to the simple one in our examples in section 3.4.2.

3.2.2 Coordination Dependencies

In Section 3.1.4, we introduced a ternary rule for coordination. We also dis-

cussed the possibility of using a set of categories of the form (X\X)/X in lieu

of adding a special conj category. Given our knowledge of CCG dependencies,

we can now illustrate how these approaches differ.

Because CCG draws dependency arcs between predicates and their argu-

ments, we produce a directed acyclic graph which excludes the conjunction,

linking its arguments to their predicates, instead of producing a tree which

attempts to attach semantic meaning to the conjunction.

I  saw  and  she  heard  the  explosion

This treatment will be useful for semantic applications, but proves tricky

to use when evaluating with dependency treebanks, which require every word

be attached to the tree. One way to address this is to use categories of the

form (X\X)/X for conjunction, instead of our ternary rule. Doing so yield

two possible dependency graphs.

If the N arguments are not co-indexed, and serves as a function word taking

both verb phrases and the object as arguments:

I  saw  and  she  heard  the  explosion

I  saw  and  she  heard  the  explosion

In contrast, if the arguments are co-indexed we end up with a union of

both of the previous dependency structures:

I  saw  and  she  heard  the  explosion

I  saw  and  she  heard  the  explosion
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I
N

promise
(S\N)/(S\N)

to
(S\N)/(S\N)

pay
(S\N)/N

you
N

John
N

,
,

who
(N\N)/(S\N)

ran
(S\N)/N

home
N

,
,

ate
(S\N)/N

dinner
N

(I, promise) (I, pay) (John, ran) (John, ate)

Table 6: Unlabeled predicate argument structures for two sentences, both of whom result in DAGs, not
trees, as the subject is shared by multiple verbs.

Additional Category p(cat | tag)

((N\N)/(S\N))/N .93 WP$
N/(S/N) .14 WP
N/(S\N) .08 WP
((N\N)/S)\((N\N)/N) .07 WDT
((S\S)\(S\S))\N .04 RBR
S/(S\N) .04 WP
S/(S/N) .02 WP

Table 8: Common categories that the algorithm
cannot induce, and their corpus probability (given
their most frequent tag in Sec. 02-21)

Model Supervision LF1 UF1

B1 POS tags 34.5 60.6
B3

P&L + Punc & Words 37.1 64.9
BC

1 + Complex Args 34.9 63.6

Table 9: Overall performance of the final systems
discussed in this paper (Section 23)

dicate missing information which only becomes
available later in the discourse.

7 Final Overall Model Performance

Finally, we evaluate these models again on the
standard Section 23 against our simplified labelset
and on undirected unlabeled arcs.

8 CoNLL vs CCGbank dependencies

Finally, we examine whether the performance
on standard unlabeled dependencies correlates
with performance on CCGbank dependencies (Ta-
ble 10)2. This also allows us to compare our
systems directly to an unsupervised dependency
parser (Naseem et al., 2010), who report directed
attachment (unlabeled dependency) scores of a
dependency-based HDP model that incorporates
either “universal” knowledge (e.g. that adjectives
may modify nouns) or “English-specific” knowl-
edge (e.g. that adjectives tend to precede nouns)
in the form of soft constraints. Their universal
knowledge is akin to, but more explicit and de-

2BH13 use hyperparameter schemes and report 64.2@20.

CCGbank 02-21 WSJ2-21 DA
Model LF1 UF1 @10 @20 @1
Naseem (Universal) 71.9 50.4
Naseem (English) 73.8 66.1

B1 33.8 60.3 70.7 63.1 58.4
B3

P&L 38.3 66.2 71.3 65.9 62.3
BC

1 34.4 62.0 70.5 65.4 61.9

Table 10: Performance on CCGbank and CoNLL-
style dependencies (Sections 02-21) for a compar-
ison with Naseem et al. (2010).

tailed than the information given to the induction
algorithm (see Bisk and Hockenmaier (2013) for a
discussion). They evaluate on their training data,
i.e. sentences of up to length 20 (without punctu-
ation marks) of Sections 02-21 of the Penn Tree-
bank3.

We see that performance increases on CCG-
bank translate to similar gains on the CoNLL de-
pendencies on long sentences. We should note
that we expect this discrepancy to grow as sys-
tems capture more fine-grained distinction. In this
vein, we computed directed attachment recall be-
tween CCGbank dependencies and Yamada and
Matusumoto’s head finding rules and found only
a 72.5% overlap. Many of the discrepancies ap-
pear to be related to verb chains and analysis of
the many DAG structures previously discussed. A
full analsyis of the distinctions is beyond the scope
of this paper but there is an interesting emperical
question for future work as to whether annotation
standards make learning even more burdensome.

9 Conclusions

In this paper, we have touched upon many linguis-
tic phenomena that are common in language and
we feel are currently out of scope for grammar in-
duction systems. We focused our analysis on En-
glish for simplicity but many of the same types
of problems exist in other languages and can be
easily identified as stemming from the same lack

3With Yamada and Matsumoto’s (2003) head rules
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Figure 3.2: Unlabeled predicate-argument dependency graphs for two sen-
tences with co-indexed subjects.

Rather than take either of these options and introduce the extra coordina-

tion categories, we will instead implement coordination conversion rules to

produce the various styles present in dependency treebanks (Section 2.2.3),

or use the ternary rule for accurate comparisons to CCGbank.

3.2.3 Non-local Dependencies and Complex

Arguments

One advantage of CCG is its ability to recover the non-local dependencies

involved in coordination, control, raising, or wh-extraction [54, 84, 70]. Since

these constructions introduce additional dependencies, CCG parsers return

dependency graphs (DAGs), not trees (like those demonstrated for coordi-

nation in Section 3.2). To obtain these additional dependencies, relative

pronouns and control verbs require lexical categories that take complex ar-

guments of the form S\NP or S/NP, and a mechanism for co-indexation of the

NP inside this argument with another NP argument (e.g. (NP\NPi)/(S|NPi)

for relative pronouns). These co-indexed subjects can be seen in Figure 3.2

where two verbs share the same subject (the solid black arcs).

Knowing the indexation is another source of supervision. In many cases

there is no ambiguity, but there can be with control verbs [68, 70]:

I promised her to pay

N ((S\Ni)/(S\Ni))/N N S\N
I persuaded her to pay

N ((S\N)/(S\Ni))/Ni N S\N
The two sentences have the same syntactic analysis, but a different co-

indexation. In the first sentence, I did both the promising and the paying.
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CCG Predicate-Argument

John saw and Mary will hear the explosion

John saw and Mary will hear the explosion

root
Dependency Tree

John saw and Mary will hear the explosion

John saw and Mary will hear the explosion

root

Figure 3.3: For meaningful comparison of CCG dependency structures to
the rest of the unsupervised grammar induction literature, we convert the
directed edges of a CCG predicate-argument structure (top) to dependency
trees (bottom). The arrow types show the corresponding structures in the
two analyses.

In the second, I did the persuading but the paying was done by her. In

supervised parsers we assume we have access to the correct co-indexation.

In chapter 9, when performing a semantic evaluation of our unsupervised

system, we will extend it to produce non-local dependencies, but rather than

provide the co-indexation, we will enumerate all of the possibilities and trust

that the semantic grounding machinery can handle the ambiguity.

3.2.4 Converting Predicate-Argument to Dependency

Trees

In section 7.1 we will compare the output of our system against dependency

grammar treebanks. Unfortunately, CCG dependencies, while convenient

and transparent to semantics (Section 3.1.5), do not always align with how

heads are specified or arcs are drawn in dependency formalisms (Section

2.1.3). This will pose a problem during evaluation (Chapters 5 and 7) when

our predicted structures cannot be compared directory to the literature (Sec-

tion 2.2.4). To try and alleviate this discrepancy we perform several deter-

ministic transformations of CCG dependencies:

1. Treat modifiers as dependents of their heads In CCG modifiers

(X/X) take arguments (X) and so the arc is drawn to mirror this process. For

comparison, we will invert the direction of these arcs in the output. This flip

is shown with the dotted arrows in Figure 3.3 for the words the and will.
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2. Every sentence has a single head word which is the dependent of

a “root” node In CCG, the many predicates in a sentence are all treated

equally in the output representation. In the CCG analysis in Figure 3.3, we

do not assume that one of the action is “primary”. Dependency treebanks

require that we choose a primary predicate to head the sentence and treat

all others as dependents. With the exception of coordinaton, we arbitrarily

treat the first verb (or noun if there is no verb) in the sentence as the root.

3. Conjunctions must be or have a dependent. In CCG coordination,

the conjunction is there only to assist in coordination by indicating that

multiple predicates take the same argument (e.g. the object explosion in

Figure 3.3). The conjunction itself does not have any dependents or serve as

a dependent. Dependency treebanks, on the other hand, require every word

be attached to the tree. We will, therefore, implement several conversion

schemes based on the specifics of the corpus (Section 2.2.3) which link the

conjunction to the tree. The most common analysis is shown in Figure 3.3.

Here the conjunction becomes the root of the sentence and takes both verbs

and their object as dependents (shown in small-dash arrows).

4. Non-local dependencies are ignored. One of the strengths of CCG

is its ability to capture non-local dependencies (Section 7.2.3). These extra

dependencies lead to a DAG structure instead of a tree. During the con-

version, we drop any non-local dependency. This is equivalent to assuming

that CCG categories have no co-indexation. In our example (Figure 3.3), the

dashed arc between Mary and will is dropped for the conversion.

A longer and more complete set of transformations for every treebank was

beyond the scope of our work here. There are still many inconsistencies

between our conversions and even the English treebank (Section 7.2.1).

3.3 Parsing

We have just outlined how a CCG derivation is constructed from lexical

categories and combinators. It is important to note that this process can

be performed efficiently (both in terms of time and space), and all possible
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derivations can be found using the CKY algorithm. This is the same algo-

rithm used for parsing context-free constituency grammars (Section 2.1.2),

but generalized composition (Section 3.1.2) may allow for more than one

left-hand side for a given pair of categories, increasing the computational

complexity of parsing to O(n6) in the worst case.

The reason the same algorithm can be used for parsing both CFGs and

CCG is because all of the stages of a CCG derivation can be expressed

through unary and binary rules. This includes coordination, whose ternary

rules can be binarized.

3.3.1 CKY

We begin by creating a square 2D array of size n2 for a sentence of length

n. Every cell in the upper triangular of this array corresponds to a span in

the original sentence. The following procedure will analyze every span in the

sentence to determine if it corresponds to a syntactic constituent. This array

is referred to as a chart, and every value placed inside it is called a chart

item. The chart items will correspond to words and CCG categories. In the

case of non-lexical items, the chart item also stores pointers to the pair of

constituents combined to create the given span. We will now step through

this process in detail. To start, we place the words of the sentence on the

diagonal of this array:

I

saw

and

she

heard

the

explosion

Every word in the language must be licensed by some set of rules in the

grammar. We place every lexical category that can produce a given word
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into the same cell as the word it produces. This category is a chart item

and it contains a pointer to the word being produced. Rather than allowing

every category licensed by the grammar, a model may choose only to use a

subset of likely categories for a given word. For simplicity, we will only place

a single category in every cell and the necessary type-raised categories. The

type-raising and unary rules for generating lexical items all reside within the

same cell:

I

N

I

S/(S\N)

N

IGenerate
Type-Raise

For reasons of space we will simply list the items in each cell next without

the use of these generating arrows:

I 
N, S/(S\N)

saw 
(S\N)/N

and 
conj

she 
N, S/(S\N)

heard 
(S\N)/N

the 
N/N

explosion 
N

Given the entires/items/edges in these cells, the algorithm progresses by

attempting to combine adjacent cell values in the next diagonal
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I 
N, S/(S\N)

saw 
(S\N)/N

and 
conj

she 
N, S/(S\N)

heard 
(S\N)/N

the 
N/N

explosion 
N

?

?

?

?

?

?

which is then repeated for every cell in the upper triangular of the array.

Specifically, spans are analyzed by size, starting with the smallest (the first

diagonal adjacent to the words) and working up to the full sentence (the cell

in the top right of the array).

I 
N, S/(S\N)

saw 
(S\N)/N

and 
conj

she 
N, S/(S\N)

heard 
(S\N)/N

the 
N/N

explosion 
N

For cells beyond the first row there are several pairs of cells which can be

combined, which correspond to string-adjacent spans. We have color coded

them here and drawn matching arrows:
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I 
N, S/(S\N)

saw 
(S\N)/N

and 
conj

she 
N, S/(S\N)

heard 
(S\N)/N

the 
N/N

explosion 
N

?

Here we are combining constituents rather than words. In particular, we

have the following pairs being tested:

I saw and she heard Purple / Solid arrows

I saw and she heard Blue / Dotted arrows

I saw and she heard Green / Small dashes arrows

I saw and she heard Red / Dashed arrows

Any of these pairs have the potential to combine to fill the cell in question,

which corresponds to the formation of a constituent: I saw and she heard.

The completed derivation shows that the blue cell combination was correct:

I 
N, S/(S\N) S/N S/N S

saw 
(S\N)/N

and 
conj

S/N[conj]

she 
N, S/(S\N) S/N

heard 
(S\N)/N

the 
N/N N

explosion 
N
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The number of possible ways to combine two entries in a cell depends on

the size of the grammar G and the length of the sentence n. There are n

possible constituents to combine and n2 cells to fill. This yields an algorithm

with time complexity O(G × n3) in the length of the sentence (n) and size

of the grammar (G). As mentioned earlier, CCG parsing can be O(n6) in

the worst case. When the set of combinatory rules is spelled out in the form

lhs← rhs, G grows to encompass the additional n2. Additionally, the chart

has space requirements of O(n2). To recap the process we just executed,

remember that every entry in a cell is referred to as a chart item. A lexical

chart item is simply a word in the sentence. The rest of the chart items tell us

which component chart items combined (binary rules) or were transformed

(unary rules) to create the category at that point in the chart. Unary rules,

like type-raising, simply apply to an element of the cell to introduce a new

chart item in the same cell.

In this discussion, we focused on finding a single parse tree using a single

lexical category per cell. In general, many derivations will share common

substructure, or chart items, during the parse. For example, we can look at

the case of a simple two-word sentence:

N
N/N N

N\N
N

(0,0)

(1,1)

(0,1)

In this simple chart, there are two parses, but the top right cell only

contains a single chart item. In the CKY algorithm, a parent chart item may

store multiple “backpointers” to which pairs of chart items combined to form

the parent. In this case, there the parent (N) stores two backpointers. One

specifies that N/N of (0,0) combined with N of (1,1) and the second specifies

that N\N of (1,1) combined with N of (0,0). This compact representation of

parses in the 2D array is referred to as a packed parse forest. By having a

single chart item N, which stores knowledge about two parses, if N is used in

p parses, we have a compact representation of 2× p parses.

This data-structure is particularly useful if our grammar or model want

to capture fine-grained details about the parse. In this discussion, the chart

items are simply words and categories, but if multiple derivations lead to

the same chart item a probability model may want to differentiate them by
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their lexical heads or other features of the parse. This enables the model

to score them differently. We can accomplish this by augmenting the chart

items to maintain information about the head word of a constituent or to

store additional derivational information about the parse that led there. The

former will be useful for models that wish to condition parses on the words

within them, and the latter will be necessary for restricting parses based on

a normal form.

3.3.2 Normal Form

In CCG, the lexicon contains a tremendous amount of information about the

grammar. In particular, because the categories are functions, they combine

via application and composition, so no additional rules are necessary for

specifying the grammar. That being said, we can constrain the ways and

contexts in which categories combine to limit ambiguity. Ambiguity arises

when type-raising or higher arity composition are used unnecessarily.

We have discussed the utility and ambiguity of type-raising and the arity

of composition, (B1, B2, and B3) in Section 3.1.3. Because the goal of this

thesis is to investigate the learnability of grammar, the initial experiments

presented in the forthcoming chapters will not entertain the full expressive

power and ambiguity of CCG. Experiments will initially be restricted to

using a context-free fragment of CCG, which only allows application (B0),

arity 1 composition (B1) and prohibits type-raising or complex arguments.

In this way, we keep the parse forests small and easier to learn from. Later

in this thesis (section 6.4.1), we will relax these constraints to B3, complex

arguments and two type-raised categories:

N → S\(S/N) N → S/(S\N)

Entertaining the broadest grammar possible is necessary for ensuring the

greatest coverage of a language’s syntactic phenomena as possible. Unfortu-

nately, many spurious ambiguities (Section 3.1.3) are also introduced, which

increase the space of derivations, but not of the resultant semantics. Spurious

ambiguities refers to CCG’s ability to generate a large number of parses that

produce the same predicate-argument structure. In this way, the number of

parses in the syntactic parse forest is larger than the number of unique seman-

tic analyses. This makes learning more difficult as it splits the probability
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mass of a single interpretation across a number of equivalent derivations.

This cannot be completely avoided, but normal-form parsing greatly dimin-

ishes this ambiguity, easing the learning and increasing the performance of

our models (Chapter 7.2.1). Therefore, unless otherwise specified, all results

will be presented will use normal-form parsing.

As noted, CCG allows for many redundant derivations of the same seman-

tic. To address this, there are two CCG normal-forms parsing algorithms

(Eisner [88] and Hockenmaier & Bisk [89]) which eliminate differing amounts

of these spurious ambiguities.

The normal form works by prohibiting a sequence of parser actions when

other, simpler, derivations are possible. For example, the Eisner normal

form was introduced to eliminate the unnecessary use of composition when

a derivation can be completed with application:

big red ball
ADJ ADJ NOUN

N/N N/N N
>B1

N/N
>

N

big red ball
ADJ ADJ NOUN

N/N N/N N
>

N
>

N

Not Normal Form Normal Form

Both derivations yield the same dependencies:

big     red     ball
N/N

N/N

so there is no need to use composition and introduce a second derivation. To

capture this restriction, we must record within each constituent how it was

derived. Specifically for this case, if X was created via composition it cannot

act as the primary functor in application.

Another, problematic case is the unnecessary use of type-raising. When

type-raising reorders how arguments are taken to allow the subject slot to

be filled before the argument we produce two derivations with the same

dependencies:

Correct analysis:

42



I saw her from afar

N (S\N)/N N (S\S)/N N
> >

S\N S\S
<

S
<

S

Incorrect analysis which contains a spurious ambiguity:

I saw her from afar

N (S\N)/N N (S\S)/N N
>T >

S/(S\N) S\S
>B1

S/N
>

S
<

S

To eliminate the second derivation, the normal form prohibits the use of

type-raising when regular application suffices for completing a derivation.

For many downstream tasks (e.g. semantic parsing in Chapter 9), where

the dependencies or semantic representation built by the parse are used, these

spurious ambiguities add noise to the system. For grammar induction, elimi-

nating these ambiguities will reduce the space of derivations and parameters

by several orders of magnitude. Further, because we evaluate our system with

a single best prediction for the parse (Viterbi decoding), we want as much of

the mass of the model concentrated on a single prediction as possible. The

full effects of the normal form is evaluated in Section 7.2.1. The Hockenmaier

and Bisk normal form is more complete when using generalized composition,

and so we will use it when experiments are run with type-raising or complex

arguments and Eisner otherwise.

As previously noted (Section 3.3.1), implementation of either normal form

follows cleanly from CKY. When performing chart parsing one stores a con-

stituent label at every span of the sentence: cell (i, j) for the span wi . . . wj.

To implement the normal forms, each chart item (currently consisting of a

constituent label) is augmented with the combinator used in its derivation.

This means the cell will now contain many repeated categories each with a

different history. Then using this history, we can easily check whether the

next combinator is a valid choice for continuing the derivation.

In the case of supervised parsing (see Chapter 5 of [84]) the model is

never presented with training data outside of the normal form, and so these
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derivations will hopefully never be entertained by the parser. Unfortunately,

an unsupervised model does not have this training bias.

3.3.3 Supervised CCG Parsing and Treebanks

We discussed (Section 2.1.5) supervised parsing for context-free parsing of

the Penn Treebank with constituency grammars. The same chart parsing and

modeling based on a treebank can be done for CCG. In particular, a treebank

of CCG derivations provides a lexicon for tags and words in a language and a

set of derivations whose unary and binary rules behave in much the same way

as a constituency grammar. The primary difficulty in creating a supervised

CCG parser is the need for a treebank. Several approaches were proposed

for learning a (Combinatory) Categorial Grammar from existing resources

[90, 91] before a full conversion of the Penn Treebank to CCG was introduced

by Hockenmaier and Steedman [70].

Since then other languages have had their treebanks converted to CCG

as well. Most notable are perhaps German [92] and Chinese [93] but many

other conversions, partial conversions, and annotations have been introduced

[94, 95, 96, 97]. These new resources allow for training supervised CCG

parsers.

Since the inception of CCGbank, a number of models have been introduced

for highly accurate supervised syntactic parsing [98, 99, 85, 100, 101, 102].

Our goal within this thesis is to build an accurate CCG parser without ac-

cess to the treebank. Despite being deprived access to the grammar of the

language, our output should be comparable to that produced by these sophis-

ticated approaches. In particular, we will use the generative model HWDep

of Hockenmaier and Steedman [98] as a comparison system in Chapter 9.

This model augments the simple CFG model discussed previously to capture

head direction and dependencies between words.

3.4 Evaluation

As was briefly discussed earlier (Section 3.2), CCG has three standard eval-

uation metrics: Supertag accuracy, Labeled Dependency F1, and Undirected

Unlabeled Dependency F1. The supertag (lexical category) of a word indi-

cates if we have correctly determined the syntactic type/role of a word. If a
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word with the correct supertag is attached incorrectly, as is commonly the

case with prepositional phrases, the labeled dependency will be wrong. Until

this work (Section 7.2), the grammar induction literature has not been able

to perform labeled dependency evaluation. This is unfortunate as labeled

dependency evaluation makes the failings of a system more informative.

3.4.1 The Need for Labeled Evaluation

The standard definition of grammar induction [41, 63] focuses on the recov-

ery of directed or undirected dependency arcs between words. As previously

noted, CCG dependencies indicate predicate-argument relations and are la-

beled by the predicate and its argument. Predicting labels incorrectly may

have no bearing on grammar induction performance (under Directed Attach-

ments: Sections 2.1.6 and 2.2.3), but indicate that the system did not learn

the functional role of words in the sentence. Where previous approaches

have been unable to produce labels, one contribution of this thesis is per-

forming labeled evaluation of our unsupervised grammar induction system.

The types of information lost when a system only produces unlabeled di-

rected attachments becomes clear when analyzing the incorrect parse below.

In this analysis, the subject is treated as an adverb, and the prepositional

phrase as a noun-phrase object of the verb:

Correct Parse Incorrect Parse

I saw her from afar

N (S\N)/N N (S\S)/N N
> >

S\N S\S
<

S
<

S

I saw her from afar

S/S (S/N)/N N N/N N
> >

S/N N
>

S
>

S

Because none of the argument-taking categories (in the incorrect parse)

are correct, none of the labeled directed CCG dependencies are correct. But

under the more lenient unlabeled directed evaluation [103], and the even

more lenient unlabeled undirected metric [54], two (the solid black arcs) or

three (the black arcs) of the four dependencies would be deemed correct:1

1For ease when reading we will often omit the argument/slot indices from labels where
they are easily recovered from the categories.
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Correct parse Incorrect parse

nsubj dobj

prep

S/S

(S/N)/N

(S/N)/N N/N (S\N)/N

(S\S)/N

(S\S)/N(S\N)/N

pobj

I saw her from afar I saw her from afar

I saw her from afar I saw her from afar

nsubj dobj

prep

S/S

(S/N)/N

(S/N)/N N/N (S\N)/N

(S\S)/N

(S\S)/N(S\N)/N

pobj

I saw her from afar I saw her from afar

I saw her from afar I saw her from afar

This is because the lexical attachments are often correct, even though they

are labeled incorrectly. Treating a subject as an adverb does attach it to the

verb, but the semantics are that of modifying the verb rather than filling an

argument slot.

This underspecification of the meaning of an unlabeled arc is equally ap-

parent when parses are translated into standard dependency grammar trees.

As discussed previously (Section 3.2.4), we translate the CCG analysis to an

unlabeled dependency tree by flipping the direction of modifiers, adding a

root edge, and removing the labels. Now three out of five attachments are

deemed correct:2

Correct parse Incorrect parse

nsubj dobj

prep

S/S

(S/N)/N

(S/N)/N N/N (S\N)/N
(S\S)/N

(S\S)/N(S\N)/N

pobj

I saw her from afar I saw her from afar

I saw her from afar I saw her from afar

nsubj dobj

prep

S/S

(S/N)/N

(S/N)/N N/N (S\N)/N
(S\S)/N

(S\S)/N(S\N)/N

pobj

I saw her from afar I saw her from afar

I saw her from afar I saw her from afar

Again, the dashed gray edges are incorrect. One particularly interesting

semantic error that is easily exposed by labeled evaluation is the possessive.

The categories of noun-modifying prepositions (at) and possessive markers

(’s) differ only in the direction of their slashes:

X/Y Y )> X
X/Y Y|Z )>B1 X|Z
X/Y Y|Z1|...|Zn )>Bn X|Z1|...|Zn

Y X\Y )< X
Y|Z X\Y )<B1 X|Z
Y|Z1|...|Zn X\Y )<Bn X|Z1|...|Zn

A full explanation of the calculus can be found
in (Steedman, 2000) including discussion of a
type-raising and a ternary rule for conjunction. We
assume no type-changing in this work.

2.1 Dependencies
By tracing through which word fills which argu-
ment of a category a set of dependency arcs, la-
beled by lexical category and slot, can be extracted
and are used for evaluation:

lexical head of a lexical category ci is the corre-
sponding word wi. In general, the lexical head of
a derived category is determined by the (primary)
functor, so that the lexical head of a category X
or X|Z1|...|Zn that resulted from combining X|Y
and Y or Y|Z1|...|Zn is identical to the lexical head
of X. However, when a modifier X|X with lexical
head m is combined with an X|... whose lexical
head is w, the lexical head of the resultant X|...
is w, not m.2 Otherwise, from would become the
lexical head of the S\N saw her from afar, and the
sentence You know I saw her from afar would have
a dependency between know and from, rather than
between know and saw.

In general, word wj is a dependent of word wi

if the k-th argument of the lexical category ci of
word wi is instantiated with the lexical category
of word wj . In the above derivation:

i j ci k wi wj

1 0 (S\N1)/N2 1 saw I
1 2 (S\N1)/N2 2 saw her
1 3 (S\S1)/N2 1 from saw
4 3 (S\S1)/N2 2 from afar

I saw her from afar

(S\S)/N2

(S\S)/N1

(S\N)/N2
(S\N)/N1

The use of categories as dependency labels
makes CCG labels more fine-grained than a stan-
dard dependency grammar. For example, the sub-
ject role of intransitive, transitive and ditransitive
verbs are all SUB in dependency treebanks but
take at least three different labels in CCGbank.

i j wj Label

2 1 I SUB
0 2 saw ROOT
2 3 her OBJ
2 4 from VMOD
4 5 afar PMOD

I saw her from afar

PMOD
VMOD

OBJ
SUB

ROOT

An additional complexity in CCGbank are cer-
tain types of lexical categories (e.g. for relative
pronouns or control verbs) which mediate non-
local dependencies via a co-indexation mecha-
nism. Identifying such non-local dependencies,
e.g. to distinguish between subject and object con-
trol (I promise her to come vs. I persuade her
to come), is most likely beyond the scope of any
purely syntactic grammar induction system but
will begin to emerge in a semi-supervised system.

2That is, the argument X and result X of a modifier X|X
are not two distinct instances of the same category, but unify.

Spurious ambiguity and normal-form parsing
Composition and type-raising introduce an expo-
nential number of derivations that are semantically
equivalent, i.e. yield the same set of dependen-
cies. In supervised CCG parsers (Hockenmaier
and Steedman, 2002; Clark and Curran, 2007),
this spurious ambiguity is largely eliminated be-
cause the derivations in CCGbank are in a normal
form that uses composition and type-raising only
when necessary, although it can be further allevi-
ated via the use of a normal-form parsing algo-
rithm (Eisner, 1996; Hockenmaier and Bisk, 2010)
that minimizes the use of composition (and type-
raising). We will show below that this spurious
ambiguity is particularly deleterious for unsuper-
vised CCG parsers that do not impose any normal-
form constraints.

3 Unsupervised CCG parsing

We now review the unsupervised CCG parser of
Bisk and Hockenmaier (2012b; 2013), which is
trained over parse forests obtained from a CCG
lexicon that was induced from POS-tagged text.

Unsupervised CCG induction The induction
algorithm needs to identify the set of lexical
categories and to learn the mapping between
words and lexical categories, e.g.:

N:{he, girl, lunch,...} N/N:{good, the, eating, ...}
S\N:{sleeps, ate, eating,...} (S\N)/N:{sees, ate, ...}
S\S:{quickly, today...} S/S:{Today,...}

Bisk and Hockenmaier (2012b) define an algo-
rithm that automatically induces a CCG lexicon
from part-of-speech tagged text in an iterative pro-
cess. This process starts with a small amount of
seed knowledge that defines which atomic cate-
gories (S, N and conj) can be assigned to which
part-of-speech tags (nominal POS tags may have
the category N, while verbs may have the cate-
gory S). Based on the assumption that, under mild
restrictions, words can either subcategorize for or
modify the words they are adjacent to, this process
produces lexical categories of increasing complex-
ity. Immediate neighbors of words with categories
S or N may act as modifiers with categories S|S
or N|N. The second round of induction can also
introduce modifiers (X|X)|(X|X) of existing mod-
ifiers X|X. In the first iteration, words with cate-
gory S can take adjacent N arguments. In the sec-
ond round, modifiers and words with category S|N
that are adjacent to words with the category N or

These dependencies are the complete predicate ar-
gument structure of the sentence and supervised
evaluation is performed by computing a parser’s
precision and recall on matching the head, depen-
dant, category and slot of each arc. A second
looser evaluation is often also performed which
simply checks that the undirected and unlabeled
arcs match. An example of this difference that’s
particularly relevant to the discussion in this paper
is the headedness of prepositional phrases versus
posessives.

Prepositional Phrase

The
N/N

woman
N

at
(N\N)/N

the
N/N

company
N

laughed
S\N

(N\N)/N2
(N\N)/N1

S\N1

Possessive

The
N/N

woman
N

’s
(N/N)\N

IT
N/N

company
N

grew
S\N

(N/N)\N1
(N/N)\N2 S\N1

The undirected edges for the inital noun phrase
are identical, but the heads differ. In CCG, we as-
sume that categories of the form X|X where X is
atomic are modifiers. In this way, the first sentence
turns the prepositional phrase (at the company)
into a modifier of the woman. In contrast, in the
posessive sentence woman ’s modifies the com-
pany. Because, the arcs are so similar, the undi-
rected unlabeled score for confusing these analy-
ses is 80% correct but the labeled score would be
20%. This example demonstrates how the head-
edness of the resultant syntactic analysis requires
semantic knowledge about people and companies,

as getting the wrong head leads to the company
laughing or other semantically nonsensical analy-
ses.

2.2 Using Labels to Diagnose Errors

Finally, we quickly provide an incorrect analysis
of the first example sentence as a simple exercise
in using labels to diagnose mistakes:

I saw her from afar

S/S (S/N1)/N2 N N/N1 N
> >

S/N1 N
>

S
>

S

In this example, the verb analysis is trying to an-
alyze the language as VOS instead of SVO. Once
familiar with reading CCG categories the model’s
output and mistake can be easily diagnosed. A
model producing this analysis is not learning the
correct word order of the language, nor the correct
role for prepositions by taking afar as a subject.
This type of mistake is obvious to a speaker of the
language even without a treebank for evaluation.
In this way we believe label prediction eases the
analysis burden when diagnosing a system’s out-
put.

3 A Simplified Labeled Evaluation

In languages with treebanks, labeled evaluation
can make this style of analysis even simpler.
Fortunately, approaches using CCG can produce
labeled output but unfortunately there are mis-
matches between the basic set of categories and
those used in treebanks. We will focus on the En-
glish CCGbank but these details apply with only
minor changes to German and Chinese as well.

3.1 Simplification

Because the lexical categories guide parsing, the
set used in supervised parsing is extremely large
and augmented with features. These features are
not strictly part of the CCG calculus but mark
properties of the underlying words, for example
indicating if a verb is declarative or infinitival or if
a noun phrase contains a number. These features
are written as brackets modifying the atomic sym-
bols: (S[dcl]\NP, N/N[num], ... ). Prior work on
supervised parsing with CCG found that many of
these features can be recovered with proper mod-
eling of latent state splitting (Fowler and Penn,
2010). In our proposed simplification we re-
move these languge specific features. Secondly,

X/Y Y )> X
X/Y Y|Z )>B1 X|Z
X/Y Y|Z1|...|Zn )>Bn X|Z1|...|Zn

Y X\Y )< X
Y|Z X\Y )<B1 X|Z
Y|Z1|...|Zn X\Y )<Bn X|Z1|...|Zn

A full explanation of the calculus can be found
in (Steedman, 2000) including discussion of a
type-raising and a ternary rule for conjunction. We
assume no type-changing in this work.

2.1 Dependencies
By tracing through which word fills which argu-
ment of a category a set of dependency arcs, la-
beled by lexical category and slot, can be extracted
and are used for evaluation:

lexical head of a lexical category ci is the corre-
sponding word wi. In general, the lexical head of
a derived category is determined by the (primary)
functor, so that the lexical head of a category X
or X|Z1|...|Zn that resulted from combining X|Y
and Y or Y|Z1|...|Zn is identical to the lexical head
of X. However, when a modifier X|X with lexical
head m is combined with an X|... whose lexical
head is w, the lexical head of the resultant X|...
is w, not m.2 Otherwise, from would become the
lexical head of the S\N saw her from afar, and the
sentence You know I saw her from afar would have
a dependency between know and from, rather than
between know and saw.

In general, word wj is a dependent of word wi

if the k-th argument of the lexical category ci of
word wi is instantiated with the lexical category
of word wj . In the above derivation:

i j ci k wi wj

1 0 (S\N1)/N2 1 saw I
1 2 (S\N1)/N2 2 saw her
1 3 (S\S1)/N2 1 from saw
4 3 (S\S1)/N2 2 from afar

I saw her from afar

(S\S)/N2

(S\S)/N1

(S\N)/N2
(S\N)/N1

The use of categories as dependency labels
makes CCG labels more fine-grained than a stan-
dard dependency grammar. For example, the sub-
ject role of intransitive, transitive and ditransitive
verbs are all SUB in dependency treebanks but
take at least three different labels in CCGbank.

i j wj Label

2 1 I SUB
0 2 saw ROOT
2 3 her OBJ
2 4 from VMOD
4 5 afar PMOD

I saw her from afar

PMOD
VMOD

OBJ
SUB

ROOT

An additional complexity in CCGbank are cer-
tain types of lexical categories (e.g. for relative
pronouns or control verbs) which mediate non-
local dependencies via a co-indexation mecha-
nism. Identifying such non-local dependencies,
e.g. to distinguish between subject and object con-
trol (I promise her to come vs. I persuade her
to come), is most likely beyond the scope of any
purely syntactic grammar induction system but
will begin to emerge in a semi-supervised system.

2That is, the argument X and result X of a modifier X|X
are not two distinct instances of the same category, but unify.

Spurious ambiguity and normal-form parsing
Composition and type-raising introduce an expo-
nential number of derivations that are semantically
equivalent, i.e. yield the same set of dependen-
cies. In supervised CCG parsers (Hockenmaier
and Steedman, 2002; Clark and Curran, 2007),
this spurious ambiguity is largely eliminated be-
cause the derivations in CCGbank are in a normal
form that uses composition and type-raising only
when necessary, although it can be further allevi-
ated via the use of a normal-form parsing algo-
rithm (Eisner, 1996; Hockenmaier and Bisk, 2010)
that minimizes the use of composition (and type-
raising). We will show below that this spurious
ambiguity is particularly deleterious for unsuper-
vised CCG parsers that do not impose any normal-
form constraints.

3 Unsupervised CCG parsing

We now review the unsupervised CCG parser of
Bisk and Hockenmaier (2012b; 2013), which is
trained over parse forests obtained from a CCG
lexicon that was induced from POS-tagged text.

Unsupervised CCG induction The induction
algorithm needs to identify the set of lexical
categories and to learn the mapping between
words and lexical categories, e.g.:

N:{he, girl, lunch,...} N/N:{good, the, eating, ...}
S\N:{sleeps, ate, eating,...} (S\N)/N:{sees, ate, ...}
S\S:{quickly, today...} S/S:{Today,...}

Bisk and Hockenmaier (2012b) define an algo-
rithm that automatically induces a CCG lexicon
from part-of-speech tagged text in an iterative pro-
cess. This process starts with a small amount of
seed knowledge that defines which atomic cate-
gories (S, N and conj) can be assigned to which
part-of-speech tags (nominal POS tags may have
the category N, while verbs may have the cate-
gory S). Based on the assumption that, under mild
restrictions, words can either subcategorize for or
modify the words they are adjacent to, this process
produces lexical categories of increasing complex-
ity. Immediate neighbors of words with categories
S or N may act as modifiers with categories S|S
or N|N. The second round of induction can also
introduce modifiers (X|X)|(X|X) of existing mod-
ifiers X|X. In the first iteration, words with cate-
gory S can take adjacent N arguments. In the sec-
ond round, modifiers and words with category S|N
that are adjacent to words with the category N or

These dependencies are the complete predicate ar-
gument structure of the sentence and supervised
evaluation is performed by computing a parser’s
precision and recall on matching the head, depen-
dant, category and slot of each arc. A second
looser evaluation is often also performed which
simply checks that the undirected and unlabeled
arcs match. An example of this difference that’s
particularly relevant to the discussion in this paper
is the headedness of prepositional phrases versus
posessives.

Prepositional Phrase

The
N/N

woman
N

at
(N\N)/N

the
N/N

company
N

laughed
S\N

(N\N)/N2
(N\N)/N1

S\N1

Possessive

The
N/N

woman
N

’s
(N/N)\N

IT
N/N

company
N

grew
S\N

(N/N)\N1
(N/N)\N2 S\N1

The undirected edges for the inital noun phrase
are identical, but the heads differ. In CCG, we as-
sume that categories of the form X|X where X is
atomic are modifiers. In this way, the first sentence
turns the prepositional phrase (at the company)
into a modifier of the woman. In contrast, in the
posessive sentence woman ’s modifies the com-
pany. Because, the arcs are so similar, the undi-
rected unlabeled score for confusing these analy-
ses is 80% correct but the labeled score would be
20%. This example demonstrates how the head-
edness of the resultant syntactic analysis requires
semantic knowledge about people and companies,

as getting the wrong head leads to the company
laughing or other semantically nonsensical analy-
ses.

2.2 Using Labels to Diagnose Errors

Finally, we quickly provide an incorrect analysis
of the first example sentence as a simple exercise
in using labels to diagnose mistakes:

I saw her from afar

S/S (S/N1)/N2 N N/N1 N
> >

S/N1 N
>

S
>

S

In this example, the verb analysis is trying to an-
alyze the language as VOS instead of SVO. Once
familiar with reading CCG categories the model’s
output and mistake can be easily diagnosed. A
model producing this analysis is not learning the
correct word order of the language, nor the correct
role for prepositions by taking afar as a subject.
This type of mistake is obvious to a speaker of the
language even without a treebank for evaluation.
In this way we believe label prediction eases the
analysis burden when diagnosing a system’s out-
put.

3 A Simplified Labeled Evaluation

In languages with treebanks, labeled evaluation
can make this style of analysis even simpler.
Fortunately, approaches using CCG can produce
labeled output but unfortunately there are mis-
matches between the basic set of categories and
those used in treebanks. We will focus on the En-
glish CCGbank but these details apply with only
minor changes to German and Chinese as well.

3.1 Simplification

Because the lexical categories guide parsing, the
set used in supervised parsing is extremely large
and augmented with features. These features are
not strictly part of the CCG calculus but mark
properties of the underlying words, for example
indicating if a verb is declarative or infinitival or if
a noun phrase contains a number. These features
are written as brackets modifying the atomic sym-
bols: (S[dcl]\NP, N/N[num], ... ). Prior work on
supervised parsing with CCG found that many of
these features can be recovered with proper mod-
eling of latent state splitting (Fowler and Penn,
2010). In our proposed simplification we re-
move these languge specific features. Secondly,

The unlabeled dependencies inside the noun phrases are identical, but

the heads differ. The first sentence turns the prepositional phrase (at the

2We do not produce labels, but write them here to help understanding the structure.
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company) into a modifier of woman. In contrast, in the possessive case,

woman ’s modifies company. According to an unlabeled (directed) score,

confusing these analyses would be 80% correct for the sentence, whereas LF1

would only be 20%. Without a semantic bias for companies growing and

women laughing, it appears there is no purely syntactic signal for the learner

to properly differentiate these parses. One possible way to address this is

through grounding entities and predicates to a semantic representation/world

(Section 9.3).

3.4.2 CCGbank Simplification

The basis for our labeled evaluation is CCGbank. In our discussion until now

we have been using a simple and more basic version of CCG than exists in

the treebank. For example, one major difference is that CCGbank augments

categories that are not modifiers with morphosyntactic features extracted

from the Penn Treebank to mark different types of constructions. These

are not part of the basic atomic set of CCG categories, and they affect the

manner in which the combinators can be applied.

In order to enable a fair and informative comparison of unsupervised CCG

parsers against the lexical categories and labeled dependencies in CCGbank,

we define a simplification of CCGbank’s lexical categories that does not alter

the number or direction of dependencies, but makes the categories and de-

pendency labels directly comparable to those produced by an unsupervised

parser. We also do not alter the CCGbank derivations themselves, although

these may contain type-changing rules (which allow e.g. participial verb

phrases S[ng]\NP to be used as NP modifiers NP\NP) that are beyond the

scope of our induction algorithm.

Although the CCG derivations and dependencies that CCG-based parsers

return should in principle be amenable to a quantitative labeled evaluation

when a gold-standard CCG corpus is available, there may be minor system-

atic differences between the sets of categories assumed by the induced parser

and those in the treebank. In particular, the lexical categories in the English

CCGbank are augmented with morphosyntactic features, written in English,

that indicate e.g. whether sentences are declarative (S[dcl]), or verb phrases

are infinitival (S[to]\NP). Prior work on supervised parsing with CCG found

that the information contained in the features can be recovered by modeling
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state-splitting with latent variables in the derivation [104]. Since we wish to

evaluate a system that does not aim to induce morphosyntactic features, we

remove the features from the evaluation. We also remove the distinction be-

tween noun phrases (NP) and nouns (N). CCGbank very often uses a unary

type-changing rule NP → N to transform a bare N into a noun-phrase, so

there are no syntactic ramifications to simplifying NP to N.

Finally, CCGbank distinguishes between sentential modifiers (which have

categories of the form S|S, without features) and verb phrase modifiers (which

take the form (S\NP)|(S\NP), again without features). But since the NP ar-

gument slot of a VP modifier is never filled, we can maintain the same number

of gold standard dependencies by removing this distinction and changing all

VP modifiers to be of the form S|S, with slash direction preserved. Main-

taining the same number of dependencies and parses is made possible by

higher-order composition:

Jane really snores

N (S\N)/(S\N) S\N
>

S\N
<

S

Jane really snores

N S/S S\N
>B1

S\N
<

S

Uses Application Requires Composition

These two parses result in the same set of directed edges. The only dif-

ference between the two graphs is the label on the arc attaching really and

snores :

Jane    really    snores

S\N Arg1

(S\N)/(S\N) Arg2

Jane    really    snores

S\N Arg1

S/S Arg1

Jane    really    snores

S\N Arg1

(S\N)/(S\N) Arg2

Jane    really    snores

S\N Arg1

S/S Arg1

With these three simplifications we eliminate much of the detailed knowl-

edge required to construct the precise CCGbank-style categories, and dra-

matically reduce the set of categories without losing expressive power. Table

3.1 shows the number of unique CCGbank categories with and without our

simplifications. The complete set of categories decreases by more than a

factor of three.

This simplification is consistent with the most basic components of CCG

and can therefore be easily used for the evaluation and analysis of any weakly

or fully supervised CCG system, not just that of our work. An example
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CCGbank w/out Feats Simplified

All 1640 458 444
Lexical 1286 393 384

Table 3.1: Category types in CCGbank 02-21

simplification is present in Figure 3.2. Similar simplifications should also be

possible for CCGbanks in other languages.

There are two other simplifications we could have made which would have

inflated the performance of our models, but we chose not to because doing

so would remove necessary semantic categories (used in Chapter 9) or would

be conflating the argument/adjunct distinction in prepositional phrases.

Modals and Auxiliaries Categories of the form (S[·]\NPi)/(S[·]\NPi),

which are used e.g. for modals and auxiliaries, are changed to (S\Ni)/(S\Ni),

not S|S in order to maintain their non-local dependency on the subject (Sec-

tion 7.2.3).

PP Arguments CCGbank differentiates prepositional phrases being used

as arguments from those which are adjuncts by giving arguments the category

PP. This requires prepositions to have the category PP/NP, while adjuncts

take the categories (NP\NP)/NP or ((S\NP)\(S\NP))/NP) as discussed in

Section 3.2.
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Chapter 4

Inducing a Categorial Grammar

Before defining probability models over grammars, we must define the space

of grammars that can be weighted or learned. In supervised parsing, the

grammar is provided via a treebank, and licenses the space of parses for any

given string. The rules of the grammar either take the form of a Context-Free

Grammar or a Dependency Grammar.

A Context-Free Grammar (section 2.1.2) requires a set of rules that specify

how non-terminals combine: S → NP VP. Depending on the word order

and syntax of a language the types of rules and the ordering of the non-

terminals will differ. Correspondingly, a Dependency Grammar specifies a set

of labels on edges connecting words or part-of-speech tags: noun
nsubj←−−− verb.

In supervised parsing, the inventory of dependency labels and the words

or tags that can be linked by any individual dependency label is given by

the treebank. As our approach is unsupervised, we will not have access to

grammars of either form, so we need a way to enumerate a set of possible

parses for a sentence given only the part-of-speech tags (we will weaken this

assumption later in Chapter 8).

Dependency-based approaches to grammar induction assume a trivially

over-general space, the fully connected graph between words. Since they do

not aim to predict labeled dependencies, the task for their model simply

reduces to predicting which edges belong in the tree.

Because other approaches are not interested in recovering labeled struc-

tures, a fully connected graph is a simple and sufficient representation. If we

were to attempt to perform grammar induction with a Context-Free Gram-

mar, we would need a set of possible non-terminals (e.g. NP, VP, S, PP, etc.)

from which we could generate an overly complete set of rules for parsing the

Work in this chapter was first published in Y. Bisk and J. Hockenmaier, “Simple
Robust Grammar Induction with Combinatory Categorial Grammars,” in Proceedings of
the Twenty-Sixth Conference on Artificial Intelligence (AAAI-12), Toronto, Canada, July
2012, pp. 1643-1649 [112] and is reprinted here with permission by the copyright holder.
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language.

S → NP VP

S → NP PP

S → NP S

S → NP NP

...

This approach would enable us to search over labeled constituents. Con-

stituents alone do not specify information about dependencies. For a CFG

to encode headedness, every binary rule must specify whether to propagate

the head from the left or the right constituent. This follows from the basic

definition of X-bar grammar [105] which assumes that any phrase can contain

intermediate constituents that propagate the head. This becomes clear with

a simple example:

will

eat

quicklyV

V’

VP

not

V’

A CFG must therefore indicate whether each derivation of a constituent

propagates a head from the left or the right child. In this case, the head of

the final VP is still the word eat so we must propagate from the left once and

then twice from the right. We outline this approach here to indicate that

inducing head-annotated context-free grammars, may, in fact, be possible,

but different constraints and seed knowledge would be necessary.

CCG provides a representation that has the strengths of both constituency

and dependency parsing while capturing fine-grained linguistic information in

the categories. What is missing is a mechanism for automatically producing

the space of these linguistically informative categories.

In this chapter, we introduce just such a process which will use only initial

knowledge of the atomic categories S, N, and conj to automatically construct

an expressive and overly-general space of lexical categories for parsing text

in any language. We will introduce two procedures for defining this space

and then learn models to refine the space in future chapters.
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4.1 Seed Knowledge

We assume that a categorial grammar can be defined in terms of just two

atomic categories, N (nouns or noun phrases) and S (sentences), a special

conjunction category conj, and a special start symbol TOP. We assume that

all strings can be parsed to create either a noun phrase or a sentence:

TOP→ N TOP→ S

We do not allow any input strings to be parsed as both a noun phrase and

a sentence. We enforce this by only allowing the rule TOP → N to fire if

there is no verb in the sentence. A slightly looser restriction will be imposed

in Chapter 8 where the definition of a verb is unclear. In that context, we

modify this constraint to only allow TOP→ N if no parse can result in an S.

This provides an important bias for the grammar to prefer analyzing verbs

with categories resulting in S.

Secondly, we assume that POS tags can be grouped into four classes: nomi-

nal, verbal, coordination, and other. This allows us to create an initial lexicon

that only contains entries for atomic categories, e.g. for the English Penn

Treebank tag set [1] or Universal POS tags [2]:

N : {NN, NNS, NNP, PRP, DT1}
S : {MD, VB, VBZ, VBG, VBN, VBD}

conj : {CC}

N : {NOUN, PRON, NUM}
S : {VERB}

conj : {CONJ}

We construct these mappings using either the Universal POS tags for a

language or the annotation guidelines when the mapping is ambiguous. In

this way, given a mapping from the tags of a language to UPOS we can

propagate the information from our basic lexicon above to any new tagset.

Where possible we deviate slightly from this initial lexicon to only allow

coordinating conjunctions to take the category conj and leaving subordinating

conjunctions to be learned by the system (language specific seed knowledge

is provided in the Appendices).

1In early experiments we found the model performed best when DT was allowed to act
as a noun. In all language beyond English we used the UPOS mapping (right) eliminating
this anomaly.

53



4.2 Category Induction Algorithm

As discussed previously, CCG categories are either atomic categories (e.g.

S, N, ...) like those in our seed lexicon or recursively defined functions (e.g.

N/N, S\N, ...). In our induction algorithms, we will create categories of

this form automatically from the seed knowledge subject to a handful of

constraints (Section 4.2.2). These complex categories are necessary, since

the initial lexicon would only allow us to parse single word utterances (or

conjunctions thereof). The lexicon for atomic categories remains fixed, but

all POS-tags will be able to acquire complex categories during induction.

In our discussion we use the following terminology when referring to cat-

egories: atomic, modifier, argument taking. Atomic categories are the most

basic units of the grammar. They have no slashes or recursive structure: S,

N, ...

Next we have modifiers. These are categories that have the same argument

and return type. For example, an adjective has the category N/N because

it both consumes a noun and returns one. To denote any possible category

and any slash direction we write this as X|X or (X|X)|(X|X). (X|X)|(X|X) is

a modifier of a modifier. This is used in cases like the adverb “very small.”

Additionally, in the case of modifiers of modifier the directions of the first

and third slash must match for the category to have the same argument and

return type.

Finally, argument taking categories are those whose argument and result

are different: X|Y where Y 6= X. We will modify these definitions slightly

in Chapter 7.2.2 when discussing auxiliary verbs. They may take the form

we have just described for modifiers ((S\N)/(S\N) for English), but they are

argument taking categories. This will be discussed later in the thesis.

4.2.1 Basic Induction Procedure

We will start off with the simplest induction algorithm. Induction is an

iterative process. In each iteration the set of categories introduced and their

complexity grows. In each round, the arity of categories increases by one

and correspondingly, our ability to parse the data improves. In practice, in

the English and Chinese CCGbanks it is rare for categories to have an arity

greater than four (Table 4.1). We will now step through up to three rounds of

54



English Chinese
Arity Types C% Tokens C% Types C% Tokens C%

0 23 1.8 348687 37.5 16 1.6 249618 40.4
1 128 11.8 306111 70.4 72 9.0 147837 64.4
2 443 46.3 224485 94.7 227 32.3 184051 94.2
3 487 84.2 48270 99.9 379 71.1 34083 99.7
4 175 97.8 1894 100.0 206 92.1 1761 100.0
5 27 99.9 75 100.0 60 98.3 130 100.0

≥ 6 1 100.0 1 100.0 17 100.0 22 100.0

Table 4.1: Distribution over the CCG category arities from the training
sections of the English and Chinese CCGbanks. The raw counts are provided
as well as the cumulative distribution. While the category token columns
show the long tail of complex categories, the counts by token indicate the
rarity of these complex categories in the corpus.

the induction process on a few simple sentences to show how new categories

can be introduced automatically given our seed knowledge.

To parse a sentence S = w0...wn, all words wi ∈ S need to have lexi-

cal categories that allow a complete parse (resulting in a constituent TOP

that spans the entire sentence). Initially, only some words will have lexical

categories:

The man ate quickly

DET NOUN VERB ADV

- N S -

This leaves us with no lexical categories for the determiner and adverb. To

remedy this, we assume that any word may modify adjacent constituents

(by taking the form X|X). For example, because The is adjacent to man

and man has the category N, The will be allowed to modify man by taking

the category N/N. This is a modifier because its argument and return type

match and the forward slash indicates that it is modifying a word to its right.

When this is applied to the entire sentence, we introduce many modifying

categories:

The man ate quickly

DET NOUN VERB ADV

N/N N, S/S S, N\N S\S

Next, we assume that any category other than N (which we postulate does

not take any arguments) can take any adjacent non-modifier category as an
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argument. Here, the S assigned to the verb is adjacent to an N which it can

take as an argument, allowing us to introduce the new category S\N for the

verb:

The man ate quickly

DET NOUN VERB ADV

N/N N, S/S S, N\N, S\N S\S

In the case of this particular sentence, this is sufficient for obtaining the

one and only correct parse:

The man ate quickly
DET NOUN VERB ADV

N/N N S\N S\S
> <B

N S\N
<

S

In general, we will require additional rounds of induction to increase the

lexicon before we will be able to complete a parse or introduce the correct

categories, leading to a very large and ambiguous parse forest. To do this we

take the categories introduced in round one and update the lexicon with all

new tag-category pairs:

DET NOUN VERB ADV

Round 0: N S

Round 1: N/N S/S S\N S\S
N\N

The first stage of induction can only introduce functors of arity 1, but

many words, such as prepositions or transitive verbs, require more complex

categories. Without them, for many sentences we will only be able to produce

incorrect parses such as:

Incorrect Preposition Category

The man eats with friends
DET NOUN VERB ADP NOUN

N/N N S\N S\S S\S
> <B

N S\N
<B

S\N
<

S
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If we use the lexicon learned in the first round of induction as the input

to a second round, we can discover additional simple categories, as well as

more complex categories. For example, we can now introduce transitive verb

categories and the correct preposition:2

The man ate chips with friends
DET NOUN VERB NOUN ADP NOUN

N/N N (S\N)/N N (S\S)/N N
> > >

N S\N S\S
<

S
<

S

The simple procedure we have just described will be the primary workhorse

for the thesis and results therein, despite its incredible simplicity.

Pseudocode

The implementation of our approach is very simple. We provide pseudocode

here for running induction across a corpus of part-of-speech tagged text (Al-

gorithm 1). The approach is very basic in that it is a brute force search

for new categories over the set of two word contexts in the corpus. Given a

pair of POS-tags, left and right, the algorithm tries to find a way for them

to modify each other or take one another as an argument. For readability,

we separate the category creation into Algorithm 2. Finally, we refer to the

function valid() to test if the proposed category violates any of our induction

constraints (Section 4.2.2).

2Our constraints do not allow us to introduce the redundant category (S/N)\N. This
is discussed in Section 4.2.2.
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Algorithm 1: Basic CCG Category Induction Algorithm

Data: Array of part-of-speech tagged sentences

Data: Seed Knowledge to POS-tag map

Result: CCG Lexicon per POS tag

// Initialize Lexicon with seed knowledge

Lexicon ← {};
foreach tag in Mapping do

Lexicon[tag] ← Mapping[tag];

end

newLexicon ← {};
// Perform n rounds of induction

for r = 1 to n do

foreach s in sentences do

for i=1 to len(s) do

// First word in the sentence

if i == 1 then

InduceRight(Lexicon[s[i]], Lexicon[s[i+ 1]]);

// Last word in the sentence

else if i == len(s) then

InduceLeft(Lexicon[s[i]], Lexicon[s[i− 1]]);

// Otherwise

else if Mapping[s[i]] 6= conj then

InduceLeft(Lexicon[s[i]], Lexicon[s[i− 1]]);

InduceRight(Lexicon[s[i]], Lexicon[s[i+ 1]]);

end

end

end

// Update the lexicon with the new categories

Lexicon ← Lexicon ∪ newLexicon;

end
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Algorithm 2: InduceRight algorithm. The algorithm attempts to take

the category on the right as an argument or to create a modifier for it.

InduceLeft follows analogously.

Data: Left POS-tag/constituent’s categories

Data: Right POS-tag/constituent’s categories

Result: New categories for left POS-tag.

foreach R in Right do

foreach L in Left do

// Can the left cat take the right cat as an argument?

if valid(L/R) then
newLexicon[Left].append(L/R)

end

end

// Can the right category be modified?

if valid(R/R) then
newLexicon[Left].append(R/R)

end

end

4.2.2 Induction Constraints

One way we can limit the size of the induced lexicon is via constraints on the

types and shapes of categories that can be introduced. The goal is to restrict

the introduction of categories that are redundant or nonsensical, without

cutting into those needed by the 15 languages we learn in this thesis. These

constraints are imposed in all three of our induction algorithms: Section

4.2.1, 4.2.4, and 4.2.5.

1. Nouns (N) do not take any arguments This does not prohibit mod-

ifier categories (N/N) but it does prohibit nouns taking sentences or prepo-

sitional phrases (not present in our grammar) as arguments: N/S. These are

very rare constructions.

2. The heads of sentences (S|...) and modifiers (X|X, (X|X)|(X|X))

may take N or S as arguments. In contrast to rule 1, S and modifier

categories can take arguments. The case of S taking arguments is perhaps

obvious as this is what produces verb categories: S\N, (S\N)/N, and so forth.
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This is particularly important for preposition categories. Because our ap-

proach does not include a PP category, all prepositions are analyzed as ad-

juncts.

president of France

Allowed: N (N\N)/N N

Disallowed: N/PP PP/N N

To get this analysis, we assume that modifiers (categories of the form X|X)

may take arguments. For the English preposition, this will result in the

categories (S\S)/N and (N\N)/N. Here, X can range over atomic categories

and modifiers: X|X⇒ S\S, S/S, (S\S)/(S\S), etc. In our discussion, we write

modifier of modifiers with vertical slashes (X|X)|(X|X), but the result (X|X)

and the argument (X|X) have to be (instantiated to) the same categories.

The first and third (the result and argument) must match. Later in the

thesis we will discuss categories of the form (S|N)|(S|N), which will not be

treated as modifiers.

3. Sentences (S) may only take nouns (N) as arguments.

(We assume S\S and S/S are modifiers). To limit ambiguity in the

grammar we assume that every lexical category S|S is a modifier. Because

modifiers have the opposite head direction of other argument taking cate-

gories, without this restriction S/S S could combine to be either head left

or head right. This ambiguity only increases in the length of the verb-chain.

4. The maximal arity of any lexical category is 3. Under any of

the schemes we have presented for category induction, categories can grow

to be arbitrarily complex. In particular, for n rounds of induction, we may

introduce categories that take n arguments. Recall that the number of ar-

guments a category takes is known as its arity. We will restrict all cat-

egories to have at most arity 3. Additionally, categories which contain a

modifier will be restricted to arity 2. This prohibits categories of the form

((X|X)|(X|X))|((X|X)|(X|X)) (arity 3), but does allow nearly every arity three

verb: (((S|N)|N)|N), subject to constraint 5.

5. Since (S\N)/N is completely equivalent to (S/N)\N, we only allow

the former category. There are four categories for transitive verbs (i.e.

categories that take two arguments of type N and yield the result S):
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(S\N)\N (S\N)/N (S/N)\N (S/N)/N

Though there are four forms, there are only three verb placements cap-

tured here: verb final ((S\N)\N), verb initial ((S/N)/N) and where the verb

sits between its arguments ((S\N)/N and (S/N)\N). To reduce spurious am-

biguity in the lexicon, we eliminate (S/N)\N in favor of the more traditional

(S\N)/N. We have not experimented with removing this constraint to evalu-

ate whether the ambiguity is detrimental to the learner. Finally, we disallow

categories that add arguments to (S/N)\N. For example, this means that

three N argument ditransitives can not take the form ((S/N)\N)|N.

6. Coordinating Conjunctions are restricted to conj if not sentence

initial or final. Additionally, conj can neither take arguments nor be taken

as one. This is because coordination uses a special ternary rule, and is

therefore outside the regular CCG calculus. If a sentence starts or ends with

a conjunction (e.g. “And then...”), the other half of the coordination is in

another sentence. For this reason, we allow conjunctions to induce and use

modifier categories in these special cases.

7. Disallow (X/X)\X to reduce ambiguity. In our initial experiments,

we will keep the grammar small by only allowing (X\X)/X. We will remove

this restriction in our final models (Section 6.4.1 & 7.2.1).

4.2.3 Failings of Category Induction

It is important to note that any induction procedure (even with constraints

like described above) would likely introduce a large number of unnecessary

categories, such as complex modifiers of the form (X/X)|(X/X) or (X\X)|(X\X),

e.g.:

The man ate very quickly

DET NOUN VERB ADV ADV

N/N, N, S/S S, N\N, S\S, S\S,

(S/S)/(S/S) (N\N)/(N\N) S\N (S\S)/(S\S) (S\S)\(S\S)

(N/N)\(N/N) (S/S)\(S/S) (N\N)\(N\N)

(S\S)/(S\S)
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It will be the task of the probability model to identify which of the cat-

egories proposed by the induction algorithm should actually belong to a

languages lexicon.

Our basic induction procedure fails in several ways:

1. It does not consider constituent adjacency (Section 4.2.4 & 4.2.5)

2. It vastly overgenerates (Section 4.2.2)

3. It adds arguments in the wrong order for the CCG calculus (Section

4.2.5)

Intuitively it seems to follow that addressing any of these concerns would

allow for the induction algorithm to constrain the learning to benefit the

grammar induction process. Unfortunately, our attempts to do so were un-

successful. We will describe two such approaches now, although they are

not necessary for understanding the main results of this thesis. The anxious

reader can comfortably skip to Section 4.2.2.

4.2.4 Constituent-Based Induction

The first insight not addressed by our basic induction algorithm is that gram-

mars capture dependencies between constituents that are not necessarily

string-adjacent. Therefore, it seems natural to extend our existing procedure

to taking adjacent constituents as arguments. For example, by completing a

partial parse below, we find that a friend can combine to N. This allows us

to induce the correct preposition category, (S\S)/N, for with.

The man eats with a friend

DET NOUN VERB ADP DET NOUN

N/N N, S/S S, N\N, S\S N/N, S\S, N, S\S
S/S S\N (S\S)/N S/S

S N

While at first it appeared this step was necessary to recover the correct

lexical categories (Ch. 5), this turned out to be an artifact of only using

short sentences for training. When induced categories are shared across the

corpus between rounds of induction on longer sentences, the coverage gains

introduced by induction over constituents are eliminated. Specifically, it is
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very likely that there is another sentence in which ADP is next to NOUN and

can, therefore, introduce the necessary (S\S)/N category to be used in this

sentence.

If we had a language in which the verb was never adjacent to a noun but

was always separated by a determiner, the constituent induction would be

necessary to induce the correct category. The success of our simple procedure

might be an artifact of performing induction over part-of-speech tags. Were

induction carried out on a per-word basis, rather than a per-tag basis, it is

possible that determiners would need to be dealt with more intelligently. In

such a case, the previous induction algorithm (with and without constituents)

would be incorrect as it incorrectly introduces arity 3 or higher categories (a

correct induction procedure is presented in section 4.2.5).

The only change necessary to the existing pseudocode to accommodate

constituent-based induction is parsing the text between rounds and iterat-

ing over all pairs of adjacent spans where one entry in the pair is lexical

(Algorithm 3). One downside of this approach is that it requires the ex-

tra computation time of parsing the sentence, which dramatically slows the

algorithm.
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Algorithm 3: Constituency Based CCG Category Induction Algo-

rithm. This algorithm includes a parsing step where all constituents

allowed by the current lexicon are used for induction.

Data: Array of part-of-speech tagged sentences

Data: Seed Knowledge to POS-tag map

Result: CCG Lexicon per POS tag

// Initialize Lexicon with seed knowledge

Lexicon ← {};
foreach tag in Mapping do

Lexicon[tag] ← Mapping[tag];

end

newLexicon ← {};
// Perform n rounds of induction

for r = 1 to n do

foreach s in sentences do

// Assume chart is a 2D array which when indexed returns

all categories for the given constituent.

chart = CKY(s, Lexicon);

n = len(s);

for i=1 to n do

for j=1 to n-i+1 do

for k=1 to i-1 do

// Lexical Constituent in on the left

if k == j then

InduceRight(Lexicon[s[k]], chart[i− k][j + k]);

end

// Lexical Constituent in on the right

if i-k == j+k then

InduceLeft(chart[k][j], Lexicon[s[i− k]]);

end

end

end

end

end

// Update the lexicon with the new categories

Lexicon ← Lexicon ∪ newLexicon;

end
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4.2.5 A Corrected Induction Algorithm

Thus far we have assumed that new categories are introduced by appending

a new argument to an existing category. Our approaches thus far do not

handle the case where a word needs to take two arguments A, B that have

different categories, but appear on the same side of the word. To handle this

case, and to correct argument ordering problems with our current induction

scheme, we can create an induction algorithm that propagates arguments

taken by a constituent down to the lexical category. To see this, let us trace

the induction of a simple ditransitive verb. First we can compare the correct

lexical category for the verb with what our induction algorithm introduces:

Correct Lexical categories:

I told her that ...

R0 N ((S\N)/S)/N N S

Our Current Induction Procedure:

I told her that ...

R0 N S N S

R1 S\N
R2 (S\N)/N

R3 ((S\N)/N)/N

In this context, we have introduced the wrong category and one which will

not allow us to find the correct derivation. The reason for this is because

the two arguments taken to the right of told have different categories: N and

S. For this reason, the naive algorithm’s use of only the adjacent categories

will not be able to introduce a category that takes an S argument in this

sentence. To address this, we must build partial parses of the sentence and

then infer the correct lexical categories.

Corrected Induction Procedure: First the verb takes its indirect object

(right) which allows it to form a new constituent: S : told her.

I told her that...

R0 N S N S

R1 S/N

⇒
I told her that...

R1 S/N N

S
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Next the verb phrase takes a direct object (that...):

I told her that...

R1 N S S

R2 S/S

⇒
I told her that...

R2 S/S S

S

Finally, the category must take its subject:

I told her that...

R2 N S

R3 S\N
⇒

I told her that...

R3 N S\N
S

Now let us trace through the derivation. In round 1, we produced an S

spanning told her. This category then took an argument S in round 2. Since

it was only possible for it to take S after consuming N we can propagate the

argument into the category from round 1, S/N, to create a new category for

told : (S/S)/N. We can then repeat this for the constituent told her that...

which took a category N to produce the correct lexical category for told :

((S\N)/S)/N.

I told her that...

N ((S\N)/S)/N N S
>

(S\N)/S
>

S\N
<

S

This new category preserves the derivation order and takes S as its second

argument, unlike our current induction algorithm that produced the category

((S\N)/N)/N. In practice, we share categories between sentences between

each round, and perform induction over part-of-speech tags, and, therefore,

induce all of the same categories that otherwise require this correct induction

scheme and so we will not report results using it. Despite this, we do feel

that future work that performs induction on individual words or within the

sentence will benefit from this corrected approach. The only change to the

induction code is within the InduceRight and InduceLeft code, to perform

the argument propagation.
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4.3 Existing Techniques for Injecting

Knowledge

What we have illustrated is a series of ways in which to generate a large

set of Combinatory Categorial Grammar categories. Again, in the case of

a CFG, we would need to define the set of non-terminals and take their

cross product to define the space. In the case of a dependency grammar, the

unlabeled edges of a fully connected graph define the search space. In both

cases, the space is highly ambiguous.

Practically speaking, it is tempting to constrain the space of constructions

with a small amount of knowledge about language broadly (in the form of

universal constraints) or the specific language we are trying to parse. At

the same time, there is an interesting question about how the grammar of a

language can be learned and what knowledge a child or machine should have

access to. The more annotation/supervision provided, the more expensive

the system is to produce and the less we learn about the intrinsic informa-

tion content of the string. Supervision can range from none, in the form of

raw text, to providing the exact grammar of a language, via an annotated

treebank.

We will briefly discuss a few points on this spectrum from most to least

supervised. We will start with two CCG-based approaches.

Knowledge from a Treebank Garrette et al. [103] assume they have

access to most of the lexical categories of a language and must only learn

their attachments. While this is cheaper than using a treebank, it does

require that a CCG trained linguist is available to annotate a large body

of text. The intuition for this approach relies on exploiting the uniquely

informative nature of CCG categories and their relative ease of annotation.

Knowledge from a Linguist Boonkwan and Steedman [38] also assume

knowledge of a CCG lexicon, but avoid dependence on a treebank by using

a simple questionnaire. By laying out a series of questions about the types

of constructions allowed by a language and fundamental properties like the

language’s word order, they only require a few hours with a linguist to quickly

create a CCG lexicon. In this way, the linguist does not need to be trained

in CCG, but a CCG lexicon can still be recovered from their answers.

67



Universal Knowledge and Prototypes In contrast, Naseem et al. [37]

try to move away from having language specific information by relying on

“universal” knowledge. Their work is with dependency grammars which al-

lows them to easily bias certain attachments (nouns as children of verbs,

adjectives modifying nouns, etc.). In this way, the language specific infor-

mation is simply having access to a correctly tagged sentence. We should

briefly mention that there are many other approaches [106, 107] that similarly

attempt to provide prototypical information to their systems with varying

success.

Our Seed Knowledge Among these approaches, we believe our work

falls closest to being fully unsupervised by only providing information about

nouns, verbs, and coordination conjunctions. Rather than encode attach-

ment preferences of a dozen or more different linguistic categories that may

or may not exist in any given language, we choose what we believe to be a

minimal universal set that exist in all languages: Nouns (N) and Verbs (S).

Their universality appears to be corroborated by the psychology literature

[108, 109, 110, 111] of child language learning.

Finally, we should mention that all of these approaches assume some knowl-

edge of the part-of-speech tags. For example, we use the tags to initiate our

induction algorithm with seed knowledge. Being able to attach knowledge to

these clean syntactic classes is a form of supervision present in all of these

approaches. Later in this thesis we will remove gold part-of-speech tags from

our system and replace them with induced clusters and a small set of la-

beled words. This lessens our reliance on supervision, but acquiring this seed

knowledge automatically would require semantics from the world. For exam-

ple, were we to investigate language learning as a robot, we would expect the

class of nouns to be grounded in physical observations and verbs in actions.

Finding a clean and naturalistic source of this supervision is of immediate

interest for future work.

4.4 Ambiguity in the Induced Lexicons

Every induction algorithm will produce an overly general grammar. In par-

ticular, our simplest approach will match nearly every possible category to

every part-of-speech tag. Further, because parsing and induction are per-
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formed with part-of-speech tags, only looking at the subset of the lexicon

successfully used to parse the corpus does not restrict the lexicon (unless

parsing is only performed on short sentences).

As the goal of our induction algorithm is to define the search space for our

probabilistic models, there are several knobs both in the induction algorithm

and parsing algorithm that can be tuned to limit or increase coverage and

ambiguity.

4.4.1 From Lexicons to Parse Forests

Given our induced CCG lexicon, we can use the CCG combinators (Section

3.1.2), and the CKY algorithm (Section 3.3.1) to exhaustively parse the cor-

pus. To control the number of parses per sentence produced with a given

lexicon, we can constrain the parser to use only a subset of the CCG com-

binators and only optionally allow type-raising. The result of running the

CKY algorithm is a packed parse forest that will be used for training the

models in subsequent chapters.

If only function application and composition of arity 1 categories is allowed,

CCG expressivity is limited to capturing context-free languages. This bounds

the parsing time at O(G × n3) and drastically reduces the size of the parse

forests. In contrast, generalized composition both slows worst case parsing

to O(n6) and permits new ambiguity into the forest. We do not know what

the “right” settings for the parser are, but we experiment with up to arity 3

composition and type-raising in the most general case.

We will place several restrictions on the way combinators are allowed to

be used. First, we assume all parsing is completed under normal-form con-

straints (section 3.3.2). Second, within our experiments the arity of compo-

sition only applies to modifiers and type-raised categories. Specifically, we

limit the arity of composition for type-raised categories to two, even in the

case of B3, and we do not allow for composition into modifiers.

Because CCG is a lexicalized grammar formalism the primary mechanism

for ensuring a syntactic analysis is in the parse forest and model’s search

spaces is the induced lexicon. This fact also implies that the main source of

ambiguity is also the overly general induced lexicons.
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4.4.2 Visualizing Lexical Ambiguity

To appreciate how broad the lexicon is we introduce, we present the full set

of induced categories used during parsing for our simplest, most constrained,

setting (arity two categories with atomic arguments) for English in Table 4.2.

The model’s task is to choose the correct categories from this space to use

when parsing.

The first column shows the pairing of categories (left) with tags (right). It

should be clear from this column that the grammar is highly ambiguous and

provides very little in the way of constraints on the learner. To visualize how

the model constrains the effective lexicon, we train a model (B1 in Section

7.2.1) and compute a new lexicon from the Viterbi parses (single best parse

per sentence) on section 22 of the WSJ corpus. These are the only categories

the model chooses to use, presented in column 2. They are a much smaller

and more English-like set of categories than was induced.

Finally, rather than print the model’s distributions, we visualize where the

mass of the distributions is congregated, by showing a thresholded version

of the Viterbi lexicon in column 3. These are the categories that comprise

95% of the lexical tokens, and the tags are those that make up 95% of the

tokens per category. The goal of this column is simply a visual representation

of pruning the tail phenomena which demonstrates how small the frequent

lexicon is when compared to the original search space provided.

While a fair number of these initial (category, tag) pairs are used in English

at least once in CCGbank, many are never used. We can use the treebank to

quantify this ambiguity precisely as we increase the grammar’s complexity.

4.4.3 Increasing Grammatical Complexity

To explore this further, we will analyze four settings of our original induction

algorithm. We will run the algorithm for two or three iterations, and we will

first try constraining the set of arguments to being atomic (S and N) and

then broaden it to allow two complex categories (S\N and S/N). There are

no changes required to the induction algorithms to induce categories with

complex categories, beyond allowing them as possible arguments. These

results are presented in Table 4.3. All of the induction is performed on

sentences of up to length 20 of sections 2-21 of the WSJ, and we will evaluate

on the development section 22.
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As the (vast) majority of categories introduced for a tag will be incorrect,

we want a sense of how large the set of candidate categories is per tag. We

compute the total number of lexical categories introduced and how many on

average that allows per part-of-speech tag. This value ranges from 26.4 to

56.4.

Given the significant increase in ambiguity, we assess the utility of intro-

ducing these new categories by computing the type and token based coverage

of these categories in CCGbank. We find that as arity and complexity in-

crease, the number of treebank tokens we can cover goes from 84.3% to 90.2%,

but that this only accounts for 20.3% or 32.4% of the category types in the

corpus. Additionally, even the most general lexicon only has a full sentence

coverage of 66%. This means the correct analysis of a third of sentences it

not within our search space. Many of these missing categories are required

for complicated constructions. We should note that despite low coverage of

the correct analyses, all of our configurations provide parses for 99.9% of the

sentences in the development set.

Finally, and perhaps most interestingly for learning, we compute Type-

based Precision, i.e. the percentage of the categories introduced that appear

in the English CCGbank at least once. We see that as the grammar grows,

this number drops precipitously from 81.1% to 36.1%. This means that in

the most restrictive setting most categories introduced are valid for at least

one English construction, while in the most general lexicon (necessary for

coverage), the majority of categories are wrong. In contrast, we see a small

but monotonic increase in Type-based coverage, i.e. the percent of English

categories being entertained by the induction algorithm.

This analysis paints a rather bleak picture. It indicates both that our

induced lexicons are insufficient to correctly parse the WSJ, and that our

attempts to increase coverage so dramatically increase the size of the lexi-

con as to make it very difficult for the model to learn to use its categories

correctly. One aspect missing from this analysis is the distribution of the

categories in the corpus. In particular, all of the approaches appear to have

high token-based coverage, which may indicate that we are recovering much

of the necessary categories for English and are only missing tail phenomena.

To investigate this, we repeat our Type based Coverage and Precision

analyses with varying category frequency thresholds for the most restricted

(2A: Arity 2 with Atomic Arguments) and most general (3C: Arity 3 with
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Size, ambiguity, coverage and precision
of the induced lexicons

Arguments: Atomic Complex
# Lexical Arity: 2 3 2 3

# Lexical Categories 37 53 61 133
Avg. #Cats / Tag 26.4 29.5 42.3 56.3
Token-based Coverage 84.3 84.4 89.8 90.2
Type-based Coverage 20.3 21.6 27.0 32.4
Full Sentence Coverage 57.8 59.5 65.5 66.0
Type-based Precision 81.1 60.4 65.6 36.1

Table 4.3: We ran our original induction algorithm four times with different
settings (two versus three rounds and with or without complex arguments).
We report here a comparison of the size, ambiguity, coverage and precision
(evaluated on Section 22) of the different induced lexicons. The full sentence
coverage indicates the percent of sentences for which we have introduced all
of the correct categories, but does not account for the use of type-changing
rules which may be necessary to complete the parse.

2A 3C
% 90 95 99 100 90 95 99 100

Type Coverage 69.2 73.7 45.7 20.3 84.6 89.5 65.2 32.4
Type Precision 24.3 37.8 56.8 81.1 8.1 12.6 22.2 36.1

Table 4.4: We complement the analysis in Table 4.3 by investigating how type
based precision and coverage change when tail phenomena are ignored by the
analysis. Here we show results when the corpus categories are thresholded
to the top 90, 95, 99 and 100%.

Complex Arguments) settings in Table 4.4. We sorted the categories by

frequency and thresholded at 90%, 95%, 99% and 100% token coverage to

see how the values change as we entertain more and more of the tail.

We see that when tail phenomena are ignored (left side of the table), the

common phenomena are largely covered by induction, but the vast majority

of induced categories are invalid. The situation then flips as we broaden to

more complex constructions likely outside the ability of our models.

To give a better sense of these tail phenomena in the corpus and how

peaked the distribution of categories is in the treebank, we present the num-

ber of categories (under our simplification) in CCGbank that meet various

frequency thresholds and how many categories are required to meet different
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% Token Coverage Freq Threshold
90 95 99 100 5 10 50 100

# Categories in 22 14 21 51 157 81 59 32 25

# Categories in 02-21 14 21 52 382 203 168 107 88
% Sentence coverage in 22 65 73 90 100

Table 4.5: To analyze how the number of categories and sentence coverage
drop off as a function of lexical category coverage, we present the number of
categories that make various thresholds, both percentage (left) and counts
(right). It becomes clear that sentence coverage on the development set falls
quickly as tail phenomena are removed from the lexicon.

amounts of corpus token coverage (Table 4.5).

The last line of the table shows the percent of sentences in section 22 that

can be correctly parsed using the categories that comprise 90, 95, or 99% of

the token coverage. We see up to a 30% gap between token and sentence

coverage.

In addition, to give a more visceral sense of scale as to the number of

induced categories and how they are reduced by the models in later chap-

ters, Table 4.6 shows the same three columns (Induced, Viterbi, 95%) as we

saw earlier in Table 4.2, but for our most ambiguous setting (Arity 3 cate-

gories with complex arguments with B3 from Table 7.5). To save space, the

categories that were not used in any Viterbi parses are simply listed at the

bottom of the table below their Universal Part-of-Speech (UPOS) tags.

4.5 Conclusions

We have laid out minimally supervised mechanisms for creating a CCG lexi-

con from seed knowledge. Because CCG is a lexicalized formalism, a tremen-

dous amount of information about a language is encoded in its lexical cat-

egories. As such, it is important to ensure the procedures introduce the

necessary categories for a language (e.g. Table 4.3). Our analysis of induced

lexicons indicated that our procedure introduced the majority of English’s

common categories and all of the necessary categories to correctly parse a

majority of the corpus. Unfortunately, we also found many English categories

were missing from our search space and that most categories introduced were

not valid English.
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Having defined the space of lexical categories and, correspondingly, the

space of syntactic parses, we switch to creating models for scoring these parse

forests and choosing the correct analysis. We already have a qualitative sense

from Tables 4.2 and 4.6 that the models will produce an effective lexicon that

is drastically smaller than was induced. Next, we lay out the details of these

models and perform quantitative multilingual analyses.
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Chapter 5

A Baseline PCFG Model

Having introduced a mechanism for creating a grammar from seed knowl-

edge with varying amounts of expressivity and ambiguity, we can parse a

large body of text to produce many possible analyses for every sentence.

Our task now is to learn statistical models capable of choosing the correct

analysis for a sentence from among the full set licensed by the grammar. The

thesis will compare two models for scoring the parse forests: A PCFG (this

chapter) and the HDP-CCG model (next chapter).

A Probabilistic Context-Free Grammar (PCFG) [22] is defined by pro-

viding a probability to every rule in a context-free grammar such that the

children are conditioned on the parent: p(B C|A) in such a manner that:∑
B′C′ A→ B′ C ′ = 1

We will factorize this representation slightly in the next section. The PCFG

is an important baseline because the model has no knowledge of CCG’s com-

binators or of the internal structure of CCG categories.

For both models, after constructing the lexicon, we parse the training cor-

pus and use the Inside-Outside algorithm [113], a variant of the Expectation-

Maximization algorithm [114] for probabilistic context-free grammars, to es-

timate model parameters. In supervised parsing, the parameters of every

distribution can be estimated by counting the frequency of constructions in

the treebank. This means that very complex models can be estimated accu-

rately to capture complex phenomena and reproduce them on test data. In

Work in this chapter was first published in Y. Bisk and J. Hockenmaier, “Simple
Robust Grammar Induction with Combinatory Categorial Grammars,” in Proceedings of
the Twenty-Sixth Conference on Artificial Intelligence (AAAI-12), Toronto, Canada, July
2012, pp. 1643-1649 [112] and Y. Bisk and J. Hockenmaier, “Induction of Linguistic Struc-
ture with Combinatory Categorial Grammars,” in NAACL HLT Workshop on Induction
of Linguistic Structure, Montreal, Canada, June 2012, pp. 90-95 [118] and is reprinted
here with permission by the copyright holder.
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contrast, when the parameters of a model are estimated in an unsupervised

fashion, the estimation procedure has only access to the space of all possible

structures for each training sentence, but is not given any information about

which structures are correct. As a result, the optimization problem becomes

highly non-convex, making it susceptible to local optima and quirks of ini-

tialization. Even in the unsupervised case, training is plagued by issues of

data sparsity, leading to insufficient support for reliable parameter estimates.

For this reason, we must focus on simple models that minimize the number

of parameters while still capturing important properties of the grammar.

While issues like data sparsity also plague supervised and semi-supervised

approaches, it is important to spend a minute to understand what the model

is being tasked with when learning in our setup. In the supervised setting,

parses are provided for every sentence, and the treebank’s creators define

the grammar. In this setting, a model with a large number of parameters

may have very little support for any particular attachment decision or when

modeling bi-lexical dependencies, but the the little data it has is correct.

In contrast, in our domain the vast majority of parses are incorrect, models

must therefore be constructed to search for very general and stable patterns

across the parse forests in the hope that these general properties like word

order or branching directions are consistent enough to be deciphered from

the noise.

Similarly, a semi-supervised setting has analogous benefits to aid learning.

A semi-supervised approach to CCG parsing (like [38, 103] or Chapter 9.5)

specifies the lexical categories of the language and therefore highly constrains

the set of analyses. This supervision makes learning much simpler as the

parse forest has been constructed to largely have the correct structure and

type of relations.

Before exploring more sophisticated modeling solutions that involve Hier-

archical Dirichlet Processes and a novel factorization for CCG based models

(Chapter 6), we will describe a set of experiments based on PCFGs.

5.1 A CFG Factorization

We use the baseline model of Hockenmaier and Steedman [98], which is a

simple generative model that is equivalent to an unlexicalized PCFG. In a
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CFG, the sets of terminals and non-terminals are disjoint, but in CCG most

categories will be both lexical and associated with complex constituents.

Since this model is also the basis of a lexicalized model that captures word-

word dependencies (i.e. which words tend to be arguments or modifiers of

which other words), it distinguishes between lexical expansions (which pro-

duce words), unary expansions (which are the result of type-raising or the

TOP rules), binary expansions where the head is the left child, and binary

expansions where the head is the right child. Distinguishing the head direc-

tion will differentiate otherwise identical parses, capturing some information

about the derivation that lead to a specific attachment decision. For exam-

ple, we might have an S/S category, which we assume to be a modifier when

it occurs as a lexical category (Today: S/S), but is not a modifier when it

was derived via composition:

S/(S\N) (S\N)/S → S/S >B1

This means that when the non-modifier variant of S/S combines with S, its

head will be the left child, whereas when the modifier S/S combines with a

verb phrase or sentence, the head will be the right child (i.e. the verb phrase

of sentence). Capturing head direction helps to model this distinction.

Each tree is generated top-down from the start category TOP. For each

(parent) node, first its expansion type exp ∈ {Lex,Unary,Left,Right} is

generated. Based on the expansion type, the model then produces either the

word w or the category of the head child (H), and possibly the category of

the non-head sister category (S):

Lexical pe(exp=Lex | P)× pw(w | P, exp=Lex)

Unary pe(exp=Unary | P)× pH(H | P, exp=Unary)

Left pe(exp=Left | P)× pH(H | P, exp=Left)

× pS(S | P,H, exp=Left)

Right pe(exp=Right | P)× pH(H | P, exp=Right)

× pS(S | P,H, exp=Right)

The space of these distributions is constrained by the space of the grammar

and the parses we see during training. Specifically, P, H and S are all CCG
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categories that occur together in the training data. In practice this means

we will only have certain pairs (H, S) which can combine to create P, not the

full set of actions licensed by CCG. Moreover, since the combinatory rules

of CCG are highly constrained, the sister S can be uniquely predicted from

the parent P, head H and the combinator. In contrast to a CFG, where any

nonterminals A, B, C can be combined via a rule A→ B C, these constraints

reduce the number of possible rules significantly. We will design a model to

explicitly exploit them in the next chapter.

Finally, to evaluate this model, the predicted Viterbi parses are converted

to word-word dependencies (Section 3.2.4) which can be compared against

those extracted from the Penn Treebank. Specifically, we use Johansson

and Nugues’s [59] code1 to obtain these dependencies, and the CoNLL 2008

shared task script [115] to evaluate unlabeled directed attachment. In order

to extract comparable structures, we performed our CCG to Dependency

conversion (Section 3.2.4).

This simple setup will provide us a basic evaluation of the learnability of an

unsupervised CCG grammar. In the next chapter we will exploit the shared

structure of categories. For now in this baseline model we only experiment

with modifications to the grammar and the smoothing of our EM algorithm.

5.2 Grammatical Expressivity

The first important question we research is the effect of grammatical expres-

sivity on performance. There are two main parameters to explore: the arity

of lexical categories introduced by induction (with and without constituents),

and the arity of composition allowed during parsing. Ultimately, we would

like to examine how they affect performance on a number of languages, but

in order to keep this cross product manageable, we treat English as our case

study and only train on short sentences (≤10 tokens) before trying to parse

other languages. The questions we explore are:

• What arity of composition should be allowed?

• Should type-raising be allowed?

• How much lexical arity should be induced?

1http://nlp.cs.lth.se/software/treebank-converter
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• Should constituent induction be included?

Parsing Power and Induction We will address the first two questions

together. We will look at five parser settings. The parser can be restricted

to only application (B0), or allowed to use composition. Composition can

be with arity 1 or 2 (B1 & B2) and optionally we can include Type-Raising

in the parsing. The settings correspond to only allowing composition (B0),

allowing arity 1 composition with and without type-raising (B1, B1 +TR),

and finally arity 2 composition with and without type-raising (B2, B2 +TR).

Lexical Arity and Constituent Induction Our second experiment will

take the best combinator setting from our parsing power experiment and

evaluate the importance of including constituents in the induction and if we

should increase lexical arity. For these experimental settings we will use a

number for the arity (1,2 or 3) and +d to denote the inclusion of derived

constituents in the induction algorithm.

5.3 Training regimes: Full EM, Viterbi EM,

K-best EM

The second question for training is the type of Expectation Maximization

(EM) to use. For each of the aforementioned experimental setups, we will

run three variations which correspond to different variants of EM. As noted,

the parse forests of our training data specify the possible outcomes of every

distribution. Once these have been computed, the model is initialized with

uniform distributions. We choose this initializer because it is simple and

reproducible, although it is not linguistically well motivated. This is partic-

ularly noticeable in the case of lexical emissions, pw(w | P, exp = Lex).

For example, pw(w | (N\N)/N, exp = Lex) can emit all part-of-speech

tags aside from CONJ which means its initial distribution will weight the

probability of the correct tag IN and any other equally at a probability of

∼0.03. Despite this, we will see the model performs surprisingly well.

Expectation Maximization When estimating a generative probability

model, our goal is to maximize the probability of the observed data. When
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labeled data is available, the frequency of events in the corpus can be summed

and normalized to produce a Maximum Likelihood Estimate (MLE) solution

for the values for every distribution in the model. Expectation Maximization

provides a means for computing these distributions in the absence of labeled

data. The approach has two components: the collection of expected counts

(E-step), and updating the model (M-step). The expected counts are the sum

of conditional probabilities for the data under the current model. When these

are summed and normalized, we have defined a new model. This process is

repeated until the model stops changing (convergence).

The process starts by defining an initial model. Instead of assuming ran-

dom distributions for the initial model (as is often done), our initial models

will use uniform distributions. This means that our results are deterministic,

rather than subject to random variations, and easily reproducible. The ini-

tial model allows us to score parses in our data. Specifically, every chart item

with category X for the cell spanning wi...wj can be assigned some likelihood

under the model as a function of the probability that a nonterminal with

category X produces the yield wi...wj (the inside probability) and the prob-

ability of a nonterminal X appearing in the context of w0...wi−1 X wj+1...wn

(the outside probability).

EM progresses by first computing the probability of a specific chart item

existing in a sentence by multiplying the outside probability of X spanning

wi...wj by the rule probability p(Y Z | X) and the inside probabilities of Y

(spanning wi...wk) and Z (spanning wk+1...wj). These probabilities can all

be computed from the chart. When this product is divided by the marginal

probability of the sentence (i.e. the total probability mass of all its parses)

under the model, we have produced an expected count for the rule X→ Y Z

in this sentence, with X spanning wi...wj, Y spanning wi...wk and Z spanning

wk+1...wj. We obtain an expected count for the rule X→ Y Z in this sentence

by summing over all possible spans wi...wj (i < j) and all possible split points

k (i ≤ k < j). Repeating this for every process for every rule in the grammar

completes the E-step. EM, as applied to PCFGs is known as Inside-Outside

[113] because of the two kinds of probabilities we just computed.

The M-step can now aggregate the counts for each rule’s usage in every

sentence of the corpus in the same manner we would extract frequency counts

for a labeled learning problem. When these are normalized, we have a new,

updated, value for p(Y Z | X). This model will predict the observed data
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with higher probability than the last one (increasing the likelihood of the

data under the model). When the change in likelihood between iterations

shrinks below a given threshold, we say the model has converged.

There are two important points to remember about EM. First, it provides

a training procedure for learning a model without labeled data. Second,

every possible instantiation of the hidden structure (i.e. every possible parse

in the entire parse forest) contributes to the model updates. The remainder

of our discussion on EM will focus on changing this second assumption.

As we have already discussed, the induction procedure is highly ambiguous.

As such, most of the parses in our charts will be wrong, and, therefore, they

will contribute potentially misleading expected counts for the model.

Viterbi EM One way to avoid accumulating counts from tail phenomena

in a parse forest, which are likely to be incorrect, is to perform Inside-Outside

using only the single “best” parse per sentence. Instead of accumulating a

tremendous number of small expected counts across the corpus, we assume

the corpus of N sentences has N analyses, each with probability 1. The hope

with this approach is that only very common substructures will appear in

the top parses, causing the model to be strongly biased towards descriptive

and useful rules in the grammar. Unfortunately, the choice of the “best”

parse is determined by the initial, potentially random, model. This style of

“winner-take-all” EM [116] is often referred to as hard EM, as it makes a

hard assignment of the probability mass of a chart to one parse, or Viterbi

EM, in reference to the algorithm for extracting the best parse from a parse

forest.

Spitkovsky et. al [50] demonstrated the utility of hard EM for unsuper-

vised grammar induction. We compare standard full (soft) EM, where we

use the entire parse forest during estimation, with Viterbi EM, as well as

with a smoothed variant of K-best EM which interpolates the probabilities

from the top-K parses with those of the full forest.

Interpolated K-Best EM We know from prior work [50] that there is

immense ambiguity in the predictions made by an unsupervised grammar

induction system. One way to help the model train is to encourage it to

reinforce whatever biases or statistics it has found in the data. This can be

done by Viterbi-EM. But unfortunately, the model’s predictions may not be
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very informative, particularly early in training when the model may have

been initialized into a poor local optima. This is likely particularly problem-

atic for a model of constituency grammars like ours which has an extremely

ambiguous grammar with many parameters.

To handle this sparsity we devised a middle-ground training scenario: In-

terpolated K-best EM. In this framework, the EM pseudocounts from the

top K parses are used to compute statistics ck, and the pseudocounts of the

full forest are used to compute the counts (cfull). We then compute two new

sets of model parameters: p̂k(x | y) with ck and p̂full with cfull. This simply

requires normalizing the counts for these two sets of expectations separately,

the later being the counts used by the normal EM algorithm.

To weight how much the model should trust one set of parameters over the

other we interpolate with λk = ck/(ck+cfull), and compute a new interpolated

probability:

p̃(x | y) = λkp̂k(x | y) + (1− λk)p̂full(x | y).

If the model is confident about its prediction λk will be large, otherwise the

model will rely more heavily on the distribution computed from the full set of

pseudocounts. We use “Algorithm 3” of Huang and Chiang [117] to compute

the K-best parses according to the current model.

While our induction algorithm does strategically limit the number of cat-

egories introduced, we find that further biasing of the data set with top-K

parsing greatly improves performance. Depending on the size of the initial

lexicon and the computational power afforded to the parser, Viterbi parsing

often hurts performance while K-best always proved beneficial, occasionally

leading to 20-point gains in performance (Figure 5.1). When sampling values

for K varying from 5-150 with the an arity two lexicon parsed with B1 +TR,

we found performance varied with a standard-deviation of 0.6, meaning the

need for a K is important, but the smoothing is largely robust to the spe-

cific value.2 All initial experiments are on English and all distributions are

initialized uniformly to avoid randomness.

2We settle on a value of 100 for B1 +TR.

84



45

54

63

72

Viterbi EM k=best EM Full EM

Impact of combinators and EM regime

K Mod TR Gen no TR Gen
1
2
3
5
7
8
22
23
24
25
26
27
28
35
60
70
75
80
90
100
110
120
130
140
150
160
170
200
500
1000
9999999

57.43 54.12 43.48
69.21
69.71
70.51
70.09
70.51
69.33
70.24
69.78
69.59 63.47 62.30
70.66
69.40
70.70
70.39
70.54
70.51 64.69 65.41
69.71
69.78
70.96
71.53 63.36 66.82
69.90
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Performance on Section 23 x K

Mod TR Gen no TR Gen

Sec 00 Viterbi EM k=best EM Full EM
B0
B1
B1 TR
B2
B2 TR

57.8 62.2 55 75
51.6 66.84 55.3 75
60.6 71.52 55 100
57.9 66 57.9 100

50 68.79 56 70

B0 B1 B1&TR B2 B2&TR

Sec 00 1 1 + T 2 2 + T 3 3 + T
B1 TR
B2 TR

47.47 49.71 71.08 71.52 63.51 62.43
41.41 68.79

40
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60

65

70

75

B1&TR

Amount of Category Induction

1 1+d 2 2+d 3 3+d

Viterbi EM K-best EM Full EM

B0 57.8 62.2 55.0
B1 51.6 66.8 55.3
B1 +TR 60.6 71.5 55.0
B2 57.9 66.0 57.9
B2 +TR 50.0 68.8 56.0

Figure 5.1: Impact of the expressiveness of the grammar and training regimen
on Section 0 performance directed attachment performance.

5.4 Analysis of PCFG Performance

Before providing a comparison with related work, we set out to evaluate

some of the open questions we have just detailed. How much parsing power

should be used? What is the effect of the K-best EM? What lexical arity

and induction scheme are best?

We begin by addressing the first two questions in tandem and holding the

lexical ambiguity constant. We found in section 4.2.1 that arity 2 categories

comprised 95% of the English treebank. For this reason, we will run our

basic induction algorithm for two iterations in the initial experiment.

In our case study, we will be training the system on sections 02-21 of the

WSJ and testing on section 0. Additionally, all models are the result of

training only on short sentence (up to 10 words excluding punctuation) and

similarly, all evaluations are computed on short sentences of up to 10 words.

5.4.1 Impact of Combinators and Values of K

The combinatory rules allowed during parsing determine the expressiveness

of the grammar, and hence the complexity of linguistic phenomena that can

be captured. They also has a significant effect on the size of the grammar

and number of parses per sentence. The training regime impacts the effec-

tive size of the grammar as well: Viterbi training (i.e. only using the highest

scoring parse to update the model) effectively prunes the grammar, while our

smoothed K-best algorithm spreads the mass out among frequent construc-

tions and categories. We therefore found a strong interaction between these

two parameters: grammar size and the choice of training regimen.
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Figure 5.1 provides results on the test set for each grammar setting with

Viterbi, full EM, and K = bestG (a grammar-specific setting of K that was

found to optimize performance on the development set). Unlike Spitkovsky

et al. [50], we found that Viterbi parsing does not in general outperform

full EM, but the right choice of K for K-best parsing can yield substantial

improvements in performance. We also found that type-raising proved ben-

eficial in both the B1 and B2 cases. These results are based on the use of

two basic induction steps in addition to a final induction step with derived

constituents (Sec 4.2.4).

Error Reduction from:

Viterbi EM Full EM

B0 10.4 % 16.0 %

B1 39.6 % 25.7 %

B1 +TR 27.7 % 36.7 %

B2 19.2 % 19.2 %

B2 +TR 37.6 % 29.1 %

We do not have a good explanation for the reason up-weighting K proves

so effective beyond noticing that the decreases in error achieved using this

technique were greatest for the most ambiguous grammars (those incorpo-

rating Type-Raising) and least for the simplest grammar (B0). This may

simply indicate that the model or data have the correct biases but it is split

between multiple parses. These biases are aggregated by K-best EM where

Viterbi EM forces the model to choose a single, partially correct, analysis.

5.4.2 Number of induction stages

Having found K to be highly influential on the model’s performance and

B1 +TR to perform best, we now fix these parameters to explore our final

question: the impact of lexical arity on performance (again using a grammar-

specific optimal K). Figure 5.2 shows that, for grammars that use B1 +TR,

two iterations of induction perform the best, while induction from derived

constituents has a minimal (or slightly detrimental) effect.

We see that arity 2 lexicons greatly outperform the rest and that con-

stituent induction has a very minor effect on performance. We can use the
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B1+TR 47.47 49.71 71.08 71.52 63.51 62.43

Figure 5.2: We use the best performing grammar setting from the previous
experiment (B1+TR) to test the impact of inducing differing grammars.
Specifically, we look at the impact of the number of induction stages on
performance (“d”: derived constituents are considered Section 4.2.4).

lessons learned from these experiments to perform multilingual evaluations

again the literature.

5.5 Test-Set Performance

We conclude from our experiments in section 5.2 that we should train and

evaluate a model that uses an arity 2 lexicon and parse with B1 +TR. We

perform an initial evaluation on section 23 of the WSJ, followed by an analysis

of the weighted lexicons, and finally a multilingual evaluation.

5.5.1 Performance Comparison

We present results on section 23 (Table 5.3), when trained on length 10 data

from sections 02-21. Starred results were obtained with additional training

data: up to length 20 (Naseem ’10 [37]) or 45 (Spitkovsky ’10 [50]). Almost

none of these systems’ performances are directly comparable to each other

(see Section 2.2.4). The closest comparison to ours (same data splits but

potentially different head-finding rules) are Cohn ’10 [36] and Headden ’09

[34].

What our results seem to indicate is that our system performs the best
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10 20 Inf
Klein & Manning ’04 47.5
Headden ’09 68.8
Spitkovsky Vit ’10 65.3* 53.8* 47.9*
Cohn ’10 65.9 58.3 53.1
CCG Induction 71.5 60.3 53.3
Naseem ’10 Universal 71.9 50.4*
Naseem ’10 English 73.8 66.1*
Boonkwan ’11 74.8

Figure 5.3: Full table of comparison results for section 23

among the approaches with lack English specific knowledge when evaluated

on long sentences (length 20 or the full corpus), and we nearly match Naseem

et al. ’s performance on short sentences. Despite this strong result, there

is still large performance gap between our system and either Naseem’s when

using English knowledge or Boonkwan’s semi-supervised lexicon.

One optimization we did not investigate was a comparison of early versus

late stopping during training, or how performance varied through iterations

of EM. We simply choose a convergence threshold for the amount of change

in log-likelihood (.0001) and reported results at convergence.

5.5.2 The Induced Lexicons

We find that the lexical categories our system induces match very well the

commonly assumed CCG categories for English. Figure 5.4 lists common

POS tags and their most likely categories (probabilities of category given tag

were computed based on the Viterbi parses of our best performing model on

the development set). Besides overall accuracy (which depends not just on

the lexicon, but also on the kinds of attachment decisions the model makes),

this is a very good indicator of how much of the language’s basic grammar the

model has captured, because CCG encodes all language specific information

in its lexicon. We find that most of the mass is centered on exactly those

categories that a linguist would include in a basic (C)CG lexicon for English,

and that generally little mass is assigned to non-standard categories such

as (N/N)/N for NN (common noun) or IN (prepositions and subordinating

conjunctions). The only possible exceptions are (S\S)/S for infinitival TO

(to) and S/N for VB (infinitival verbs), which can both be explained by the
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Tag Category p(c | t) Tag Category p(c | t)
NN N 0.839 RB S/S 0.527

N/N 0.133 (S\S)/(S\S) 0.275
(N/N)/N 0.021 S\S 0.119

DT N/N 0.925 VBD (S\N)/N 0.419
N 0.034 S\N 0.339
(N/N)/N 0.011 (S\N)\S 0.339

JJ N/N 0.861 TO (S\S)/S 0.498
S\S 0.114 (S\S)/N 0.437
(S/S)/N 0.012 N/N 0.012

IN (S\S)/N 0.678 VB S/N 0.743
(N\N)/N 0.148 S 0.151
(N/N)/N 0.069 N/N 0.031

Figure 5.4: The most likely induced lexical categories for common parts of
speech (probabilities based on Viterbi parses of section 00)

fact that infinitives are rarely preceded by subjects (so we are unlikely to have

the necessary noun verb context required to learn S\N), whereas (S\N)\S for

VBD (past tense verbs) is actually required for inversions that are frequently

used with direct speech in our domain (“This was obvious”, he said.).

Why is our model able to induce these linguistically correct categories?

Since our induction scheme allows all categories to be modifiers or modifiers

of modifiers, one obvious grammar that it permits is one where verbs are S (to

fulfill the constraint that sentences containing verbs are analyzed using the

TOP→ S rule), and everything else is either S/S or S\S. The reason that this

does not plague us is subtle yet important. Because we do not differentiate

between lexical and non-lexical non-terminals but rather have a distribution

over expansions (Section 5.1), the frequent use of S throughout the tree in

various binary productions leaves little mass for a lexical S. In contrast, a

category like (S\N)/N will nearly never appear anywhere but at the lexical

level, resulting in a very high probability of being a lexical category.

Specifically, recall that the model has four outcomes in the expansions

distribution:

pe(exp=Lex | S) pe(exp=Unary | S)

pe(exp=Left | S) pe(exp=Right | S)
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These must sum to one, but pressures like TOP → S prevent the lexical

distribution from ever consuming too much of the mass. Even in the simplest,

two word, sentences that contain a lexical S, there must be another that is

not lexical (e.g. S/S S has one lexical S and one with exp=Right). In

contrast pe(exp=Lex | (S\N)/N) can get arbitrarily close to one as it will

almost always appear as only a lexical category. This is particularly true for

parsing settings where the composition arity is limited. For example, in B1,

S|S will not be able to compose into the transitive verb, so with the exception

of coordination the category will always be lexical.

An additional question is why do nouns acquire the English ordering N/N

when they have the equally valid opportunity to be N\N. Specifically, with

compound nouns (e.g. NN NN) there are two equally likely analyses: N/N N

and N N\N. Although we allow the tag DT (e.g. this) to act as a noun (e.g.

This/DT is/VBZ fun/NN ), many noun phrases do not contain a determiner,

increasing the relative frequency with which N generates a nominal tag, and

decreasing the probability of it generating DT. Further, DT can almost always

be analyzed as N/N and when the determiner is missing, the adjectives, which

tend to precede nouns, must take the category N/N. The result of these fac-

tors combined is a very high probability of pe(exp=Right | N) and therefore

a grammatical bias towards N/N for nouns, determiners, and adjectives.

5.5.3 Multilingual Performance

Finally, we performed a basic evaluation of this naive approach across ten

corpora as part of the PASCAL Shared Task [63, 118]. Participants were

allowed to tune their systems on the development set, supplement with ad-

ditional data, and were encouraged to train on the full union of the train,

development, and test sets. We present results for our PCFG system against

that of Blunsom and Cohn [42] who also trained a constituency style parser

(Tree-Substitution Grammar) and a max over all participating systems in

Table 5.1. We discuss this evaluation and the systems being compared again

more fully in Section 7.1.1.

We also attempted to tune our system. Our knobs included whether to

use a language’s coarse or fine tagset, the length of sentences included in the

training data and if punctuation should be included during training via the

introduction of simple binary rules (e.g. X → X punc). Again, the value
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of K was tuned, but its exact value had a marginal effect on performance.

Participants tuned many of the same values and occasionally entered multiple

systems, one with each type of part-of-speech tagset (Fine, Coarse, UPOS).

Punctuation was included in Arabic, Childes, Danish, Dutch and Slovene.

Additionally, we report the length of sentences included during training. We

experimented with sentences of length 10, 15, 20, and in the case of Arabic

we included 40 because the data set was so small.

The optimal settings for every language (chosen on the development data)

are presented in the top two rows of Table 5.1. The model performances are

for sentences of length 10 and 15 (not counting punctuation marks).

What is immediately clear from our results is that even with tuning (which

has limited effect), our results fall short of the best performing systems. Most

of the best results came from the work of Tu [43] that used the development

data to choose the best regularization on dependency types. Despite this, our

approach is competitive or the best in many languages. It appears our best

results are on languages with more data (right side of the table) as compared

to those with very few tokens (left). In the next chapter, we introduce a new

model which will greatly outperform our PCFG model without any of this

tuning.

As a final note we should mention that the workshop organizers performed

a more in-depth analysis of the English results and found that our system

performed best overall when different head-finding rules were used for deter-

mining dependencies. They compared five types of dependencies: “standard,

CoNLL2007, functional references, lexical, and oldLTH” [63]. We performed

best on the lexical and oldLTH evaluations where Blunsom and Cohn per-

formed best on the standard, CoNLL2007 and functional evaluation.

5.6 Conclusions

What we have demonstrated here is that a simple constituent based model

(PCFG), which does not take into consideration the internal shared func-

tional structure of CCG, can still produce dependencies at a level competitive

with systems which directly model dependencies. In the next chapter, we will

introduce a novel model factorization specific for CCG. In this chapter we

introduced a simple technique to improve performance via interpolated K-
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best training, but in the next chapter we will use a non-parametric bayesian

formulation to achieve smoothing whose performance will be more impactful

and easily controlled via setting hyperparameters.
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Chapter 6

A Hierarchical Non-Parametric
Bayesian Model for CCG

Having demonstrated that a grammar can be learned from our very general

induction scheme and that the CCG parses once converted to dependency

trees are competitive with existing approaches, we now turn our attention to

the primary model of this thesis: the Argument Model and its extensions.

This model is tailored to the specific constrained nature of CCG derivations.

6.1 A New CCG Argument Factorization

We have just seen that a basic PCFG approach to modeling was competi-

tive with dependency induction algorithms. We experimented with simple

ways to augment the training procedure to constrain the grammar and sub-

sequently help address the issue of sparsity. Unfortunately, this factorization

does not take advantage of the unique functional nature of CCG. We, there-

fore, introduced a new factorization we call the Argument Model [119]. This

factorization will allow us to define a novel non-parametric model of CCG

parses. This underlying insight in this model is the constrained nature of

CCG categories. We will train both a parametric and non-parametric vari-

ant of the model.

The model factorization exploits CCG’s strong strong constraints on a

parent category’s left and right children since these must combine to create

the parent type via one of the combinators. In practice, this means that

given the parent X/Z, X\Z or an atomic X, the choice of combinator c and an

argument Y, we can uniquely determine the categories of the left and right

children:

Work in this chapter was first published in Y. Bisk and J. Hockenmaier, “An HDP
Model for Inducing Combinatory Categorial Grammars,” Transactions of the Association
for Computational Linguistics, pp. 75-88, 2013.[119] and is reprinted here with permission
by the copyright holder.
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Parent c → Left Right

X/Z B0
> (X/Z)/Y Y

B0
< Y (X/Z)\Y

B1
> X/Y Y/Z

B1
< Y/Z X\Y

and correspondingly for X\Z:

Parent c → Left Right

X\Z B0
> (X\Z)/Y Y

B0
< Y (X\Z)\Y

B1
> X/Y Y\Z

B1
< Y\Z X\Y

Finally, when the parent is atomic only application is possible:

Parent c → Left Right

X B0
> X/Y Y

B0
< Y X\Y

These tables should look very familiar. They are precisely the derivation

rules from the CCG grammar definitions, but flipped (section 3.1.2). Now

instead of having two categories we wish to combine, as is done during pars-

ing, we have a parent from which we produce children, eventually as part of

a generative story.

This formulation easily extends to handle unary rules that arise via type-

raising (T, Section 6.4.1) or type-changing (XX, not used in this thesis).

We simply treat the argument Y as the unary outcome so that the parent,

combinator and argument uniquely specify every detail of the unary rule:

Parent c → Y

TOP TOP ∈ {S,N}
S/(S\N) T< N

S\(S/N) T> N

N\N XX S\N

In CCGbank, very few type-raised categories are used, and they are con-

strained to overlap with the set of lexical categories. Specifically, if type-

raising produces a category T/(T\X), T\X must exist in the lexicon. If our
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model were trained on gold-standard parses, we would entertain the same

set of constraints, but for simplicity in our unsupervised models we will only

entertain the two type-raising rules shown in the table above. Future work

should explore expanding the search space further.

We still distinguish the same rule types as before (lexical, unary, binary

with head left/right), leading us to the following model definition:

Given: P := X

where t ∈ {Left,Right,Unary,Lex}

p(t | P)×
{
p(w | P, t) Lex

p(Y | P, t)× p(c | P, t,Y) o.w.

Argument Combinator

Note that this model generates only one CCG category, but uniquely de-

fines the two children of a parent node. We will see below that this greatly

simplifies the development of non-parametric extensions. Specifically, where

a CFG must define a distribution over all possible children B and C for any

rule A→ B C, our approach generates a single argument Y given the parent

P. When B and C are each extended to range over an infinite set of nonter-

minal categories, non-parametric PCFG models have to capture a product

over two infinite distributions, p(B) and p(C). By constrast, if we allow Y

to range over an inifinite set of categories, we only have to model one infi-

nite distribution, p(Y). We will see that this greatly simplifies our approach

(Section 6.3.3).

There are a few important notes to consider in our model definition:

• P will take the form X|Z, X|X, X and TOP.

• One place the model can leak mass, depending on how distributions are

defined and smoothed, is lexical emissions. If the model assigns non-

zero probability to emitting any word from any category (due to the

base measures), but the grammar only allows parses where a (word/tag,

category) pair exists in the induced lexicon, the model will place mass

on impossible outcomes.

• In the parametric model (Section 6.2), the space of argument cate-

gories Y will be fixed and determined by the set of parses seen when

parsing the training data. For this reason, only the non-parametric

model (Section 6.3) must properly deal with the infinite possible space
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of outcomes allowed by CCG. By constraining the grammar to rules

seen during training, not just lexical items, we will not introduce novel

instantiations during testing, but we will define the model to score the

infinite space of unseen sentences and parses.

6.2 Parametric (Non-Hierarchical)

Argument Model for CCG

Having defined a new way to factor CCG categories, we can estimate the

model’s distributions using EM, the same way we did for the PCFG model

(Chapter 5.3). We can use the induced lexicons to parse the corpus, use

an initial model to compute pseudocounts, and then update the model’s

distributions p(t | P), p(w | P, t), p(Y | P, t), and p(c | P, t,Y).

The strength of this model is that it takes CCG’s functional nature into

account. Specifically, even if the model has weak performance, the model’s er-

ror analysis may prove more informative than that of CFG based approaches.

For example, given some parent X, the CFG approach provides a distribution

over possible children B, C which combine to create X, but the distribution

does not directly inform us about any commonality between the children.

The children are treated as independent.

In contrast, in the argument factorization, if the model learns that the

argument N is more likely to be generated from a parent S, we know the

model has learned that verbs have a bias towards taking nouns as arguments.

In contrast, if the primary argument for S is also S, we know the model is

favoring modifier analyses, a potentially problematic result.

One of the weaknesses of this simple approach is that there is no parame-

ter sharing between distributions. It would make sense to extend our current

reasoning about arguments further. We might want to ask what the lan-

guage’s argument taking behaviors look like as a whole, and how specific

categories diverge from the norm.

Additionally, in a parametric model, all distributions must be defined in

advance. The values will change during training, but the set of conditioning

variables and possible outcomes must all be defined before the model can

be used or trained. These are the parameters in the parametric model. In

contrast, a non-parametric model has the ability to introduce new distribu-
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tions, outcomes and conditioning variables automatically. The model will

introduce distributions as necessary for the data. It does this, in part, by

exploiting shared parameters between distributions.

The ability to handle shared distributions and capture how the model

diverges from population norms, as well as the ability to introduce new dis-

tributions as necessary are two important strengths of a hierarchical non-

parametric approach.

6.3 HDP-CCG: A Non-Parametric Model

Simple generative models such as PCFGs (previous chapter) or the para-

metric version of the argument model (previous section) are not robust in

the face of sparsity, since they assign zero probability to any unseen event.

Sparsity is a particular problem for formalisms like CCG that have a rich

inventory of object types. Non-parametric Bayesian models, e.g. Dirichlet

Processes [120] or their hierarchical variants [121] and generalizations [122]

overcome this problem in a very elegant manner, and are used by many

state-of-the-art grammar induction systems [37, 42, 38]. They also impose

a rich-getting-richer behavior that seems to be advantageous in many mod-

eling applications. Earlier, in Section 5.3, we attempted to mimic this rich-

get-richer behavior for our PCFG model in an ad-hoc manner via a top-k

reweighting version of EM.

The argument model introduced above lends itself particularly well to non-

parametric extensions such as Hierarchical Dirichlet Processes (HDP) [121].

In this thesis, the size of the grammar and the number of productions are

fixed because they are constrained by the induced grammar, but we present

the formulation as infinite to allow for easy extension in the future. Specif-

ically, this framework allows for extensions which grow the grammar during

parsing/training, or fully lexicalize the productions. The strength of the

non-parametric approach is its ability to introduce new, previously unseen,

outcomes to distributions. Lexical distributions are one place where this is

particularly important. The space of words that a category might emit is

both large and, in general, unbounded, making it necessary to have a mech-

anism which can handle sparsity and assign probability mass to novel data.

Additionally, again, while our current work uses a restricted fragment of
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CCG that has only a finite set of categories, i.e. those induced or produced

during parsing of the training data, CCG allows for generalized composition

[53], which makes it possible to generate categories of unbounded arity. We

therefore believe that this is a very natural probabilistic framework for CCG

since HDPs make it possible to consider a potentially infinite set of categories

that can instantiate the Y slot while allowing the model to capture language-

specific preferences for the set of categories that can appear in this position.

It is important to note that the categories which serve as arguments may

themselves have internal structure. For example, in the rule

X/(Y/Z) (Y/Z)/W → X/W

the argument takes the form Y/Z. This means that any generative story

which includes the production of CCG arguments as defined here must be

able to generate and assign probabilities to a possibly unbounded number of

categories with internal structure. We will return to this in more detail later.

6.3.1 Incorporating the HDP

In Bayesian models, multinomial distributions are drawn from a correspond-

ing n-dimensional Dirichlet distribution prior. Multinomials are n-dimen-

sional distributions over a discrete set of outcomes. For example, a fair

6-sided die has the distribution M = [1
6
, 1

6
, 1

6
, 1

6
, 1

6
, 1

6
]. Each dimension of the

vector corresponds to the probability of rolling the numbers one through six.

In general, dice might be rigged to express an infinite number of distribu-

tions. Formally, the value of each dimension can take any value in the range

[0, 1] as long as the sum of all dimensions is equal to one:
∑

iM [i] = 1.

Due to this constraint, if we plot the location of every multinomial of

dimensionality n, they fall within an (n-1)-dimensional simplex. An n-

dimensional Dirichlet distribution is defined over the (n-1)-dimensional sim-

plex:

p(x1, ..., xK ;α1, ..., αK) =
∏K

i=1 Γ(αi)

Γ(
∑K

i=1 αi)

∏K
i=1 x

αi−1
i

The Dirichlet distribution assigns probabilities to any point on the simplex

and therefore gives the probability of choosing any particular multinomial

distribution, as each point on the simplex p = [p1...pn−1] (with 0 ≤ pi ≤ 1

∀i, and
∑

i pi = 1) defines an n-dimensional multinomial distribution. The
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Dirichlet distribution is a conjugate prior distribution to the multinomial,

as it defines a distribution p(x) over models x prior to the incorporation

of any observed data y. According to Bayes’ rule, p(x | y), the posterior

probabilty of the model given the data is proportional to the prior p(x)

times the likelihood of the data under the model, p(y | x).

p(x | y) = p(y|x)p(x)
p(y)

A conjugate prior has the same mathematical form as the posterior p(x |
y). That is, if the prior p(x) is a Dirichlet distribution, and p(y | x) is a

multinomial to be estimated from data, the posterior p(x | y) is again a

Dirichlet distribution, which can be multiplied by the prior, p(y), to produce

a posterior, p(x | y), which can be used as the new (updated) prior. This

description is, again, parametric in nature because we assume knowledge of

n, the space of outcomes, in advance.

(Hierarchical) Dirichlet Processes

The Dirichlet Process (DP) generalizes the Dirichlet distribution to an in-

finite number of possible outcomes, allowing us to deal with a potentially

infinite set of categories or words. DPs are defined in terms of a base distri-

bution H over the space Θ that corresponds to the mean of the DP, and a

concentration or shape parameter α. G is Dirichlet process distributed with

base distribution H and concentration parameter α, written G ∼ DP(α,H),

if (G(A1), ..., G(Ar)) ∼ Dir(αH(A1), ..., αH(Ar)) for every finite measurable

partition A1, ..., Ar of Θ [123, 124, 125, 120]. There are several popular ways

to define the DP. We present the stick-breaking construction of Suethuraman

(1994) [126].

Our aim is to create a discrete distribution over an infinite space (of words

or categories). Naively, extending a multinomial to infinity does not make

sense as 1
∞ = 0. Further, we will only emit an infinite set of words or cat-

egories in the limit, so there is a tremendous amount of wasted probability

mass in such a naive characterization. The incremental generation of data,

coupled with the fact that common observations are likely to be observed

first, is captured within the DP formulation and the stick-breaking construc-

tion. The basic metaphor behind the stick-breaking construction is that of a

(potentially unbounded) number of pieces that are being successively broken
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off of a unit-length stick. The length of each piece is determined proba-

bilistically as a fraction of the length of the currently unbroken part of the

stick.

Formally, H defines a base distribution over the infinite space of outcomes.

We sample an atom δφk (outcome) with probability φk from H. Next, we

assign this outcome some probability. Remember that the total probability

mass that can be assigned to the union of all outcomes is one, so we need

a mechanism for choosing how much of that mass (i.e. βk) to assign to our

new outcome φk. This is achieved with a Beta distribution (the conjugate

prior for the Bernoulli distribution), Beta(1, α), which defines a distribution

over the range [0,1].

p(x; 1, α) = Γ(1+α
Γ(α)

(1− x)α−1

If this is the first outcome generated (k = 1), we say the probability of

choosing the outcome φ1 is β′1 ∼ Beta(1, α). For the next unique outcome

(k = 2), the mass that remains to be allocated is 1−β′1. We therefore assign

φ2 a portion β′2 ∼ Beta(1, α) of the remaining mass, or β′2 × (1 − β′1). In

general, for draw k we define βk, i.e. the overall probability mass of the k-th

outcome, as the product of the size of the remaining stick (
∏k−1

l=1 (1−β′l)) and

the fraction of that remaining stick that is broken off (β′k ∼ Beta(1, α)):

βk = β′k

k−1∏
l=1

(1− β′l)

What we have just defined is a mechanism for generating and weighting

an infinite set of discrete outcomes. We can put this all together to define a

Dirichlet Process measure G by assigning probabilities βk to each point δφk
from 1 to infinity:

G =
∞∑
k=1

βkδφk

We can now draw multinomials from this process in the same way we previ-

ously drew multinomials from a Dirichlet distribution.

The most powerful part of this approach is the ability to define a hierarchy

of Dirichlet Processes. In a Hierarchical Dirichlet Process (HDP) [121], there

is a hierarchy of DPs, such that the base distribution of a DP at level n is

another DP at level n − 1. This means that just as we drew new outcomes
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from H for the DP, now we draw outcomes from G for the HDPs at the

next level of the hierarchy. We will make this more concrete throughout the

discussion of our model, but we can quickly convey the intuition here.

Imagine a distribution over the potentially infinite space of English words:

p(w). If we want to model bi-gram probabilities, p(wi | wi−1), we need to

define an infinite set of distributions (one for every wi−1), each of which have

an infinite space of outcomes (every possible wi). The HDP allows us to define

a prior G whose mean is the unigram distribution p(w). This allows us to

draw similar p(wi | wi−1) distributions from a shared prior. In other words,

before any evidence is acquired to help estimate p(wi | wi−1) we can specify

how much variation exists between every distribution by specifying the shape

of the shared base measure G. Further, once information is acquired, it

can be used to inform the shared measure G to influence all other sampled

distributions.

A perhaps simpler way to understand this is that the HDP allows us to

specify that all bi-gram probability models for words should, initially, take a

form very similar to the unigram distributions, until evidence is accumulated

that indicates otherwise. Second, any information learned about the shape of

the bi-gram should be propagated back to inform the unigram distribution.

In these two complementary ways, the HDP allows for an elegant solution

to smoothing and parameter sharing in the face of infinite distributions.

This technique has been demonstrated as being very effective for language

modeling [122].

HDP Formulation of the Argument Model

This intuition for the shared parameters between distributions in a bi-gram

language model applies to our approach to modeling CCG parses. Specifi-

cally, we aim to capture the same sharing of distributions over words between

the lexical categories emitting them. Additionally, the factorization allows

us to capture parameter sharing between the argument generating distribu-

tions, p(Y | Z, t). These produce a CCG argument Y given a parent Z and

expansion type (t ∈ {Left, Right, Unary}). We discuss this more fully in

section 6.1.

The HDP-CCG (Figures 6.2 and 6.1) is a reformulation of the Argument
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zi

yi ci

zL(i) zR(i)

xL(i) xR(i)

z ∞

∞y

φY

θT

θC

φL

βY

βL

Figure 3.2: Because we are working with CCG, the parent zi, argument yi

and combinator ci uniquely define the two children categories (zL(i), zR(i)).
The dashed arrows here represent the deterministic process used to
generate these two categories.

The argument model introduced above lends itself particularly well to non-

parametric extensions such as the standard Hierarchical Dirichlet Processes

(HDP). In this work the size of the grammar and the number of produc-

tions are fixed and small, but we present the formulation as infinite to allow

for easy extension in the future. Specifically, this framework allows for ex-

tensions which grow the grammar during parsing/training or fully lexicalize

the productions. Additionally, while our current work uses only a restricted

fragment of CCG that has only a finite set of categories, the literature’s gen-

eralized variants of composition make it possible to generate categories of

unbounded arity. We therefore believe that this is a very natural probabilis-

tic framework for CCG, since HDPs make it possible to consider a potentially

infinite set of categories that can instantiate the Y slot, while allowing the

model to capture language-specific preferences for the set of categories that

can appear in this position.

The HDP-CCG model In Bayesian models, multinomials are drawn from

a corresponding n-dimensional Dirichlet distribution. The Dirichlet Process

(DP) generalizes the Dirichlet distribution to an infinite number of possible

outcomes, allowing us to deal with a potentially infinite set of categories or

words. DPs are defined in terms of a base distribution H that corresponds

to the mean of the DP, and a concentration or shape parameter ↵. In a

Hierarchical Dirichlet Process [Teh et al. (2006], there is a hierarchy of DPs,

such that the base distribution of a DP at level n is a DP at level n� 1.

27

Figure 6.1: This is the plate diagram for our model. It allows for an infinite
space of categories and lexical emissions. Because we are working with CCG,
the parent zi, argument yi and combinator ci uniquely define the two children
categories (zL(i), zR(i)). The dashed arrows here represent the deterministic
process used to generate these two categories.

Model introduced above in terms of Hierarchical Dirichlet Processes.1 The

model has two main families of distribution: 1. Infinite lexical emissions 2.

Infinite generation of CCG categories.

In both cases, a shared base distribution defines the global distribution

over either lexical emissions (βL) or CCG categories which serve as arguments

(βY). In the face of sparsity, there may be insufficient evidence to estimate

a good lexical or argument distribution for a category. In these cases, the

shared base distributions allow the model to “fall back” on the global mean.

The ease with which our factorization allows for implementing this parameter

sharing and non-parametric extensions is at the heart of what makes the

model so attractive.

An argument yi is drawn for a specific CCG category from φY
zi

. By com-

bining a stick breaking process with a multinomial over categories we can

define a DP over CCG categories whose stick weights (βY) correspond to the

frequency of the category in the corpus. Next we build the hierarchical com-

ponent of our model by choosing an argument distribution (φY), again over

the space of categories, for every parent X/Z. This argument distribution is

drawn from the previously defined base DP, allowing for an important level

1An alternative HDP model for CCG semantic parsing was proposed by Kwiatkowski et
al. (2012) [127], but it does not take advantage of our CCG specific argument factorization
and instead models any child of a parent in the grammar (unary, binary, lexical or lambda
calculus) as a tuple to be emitted in a manner more akin to a CFG.
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HDP-CCG

1) Draw global parameters
Define MLE root parameter θTOP

Draw top-level symbol weights βY ∼ GEM(αY)
Draw top-level lexical weights βL ∼ GEM(αL)
For each grammar symbol (full CCG category) z ∈ {1, 2, ...}:

Define MLE rule type parameters θT
z

Draw argument parameters φY
z ∼ DP(αY, βY)

Draw lexical emission parameters φL
z ∼ DP(αL, βL)

For each grammar symbol y ∈ {1, 2, ...}:
Define MLE combinator parameters θC

z,y

2) For each parse tree:
Generate root node zTOP ∼ Binomial(θTOP)
For each node i in the parse tree:

Choose rule type ti ∼ θT
zi

If ti == Lex:
Emit terminal symbol xi ∼ φL

zi
If ti == Left/Right/Unary:

Generate argument category yi ∼ φY
zi

Generate combinator ci ∼ θC
zi,yi

Deterministically create zL(i) (and zR(i) if binary)

Recurse on children

Figure 6.2: The HDP-CCG has two base distributions, one over the space
of categories and the other over words (or tags). For every grammar sym-
bol, an argument distribution and emission distribution is drawn from the
corresponding Dirichlet Processes. In addition, there are several MLE dis-
tributions tied to a given symbol for generating rule types, combinators and
lexical tokens.
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of parameter tying across all argument distributions. We discuss this further

in section 6.3.1. First, we will describe how words are generated.

Generating Words

In our model, we generate words w conditioned on lexical categories z. This

corresponds to first defining a random probability measure over words βL,

which we use as the base measure for a Dirichlet Process from which we draw

a distribution over words for a specific lexical category zi: p(w | zi) = φL
z .

Finally, the actual word xi is drawn from φL
zi

.

The stick breaking distribution over βL is abbreviated in this thesis as

βL ∼ GEM(αL), where GEM stands for Griffiths, Engen and McCloskey

[128]. The stick-breaking process is parameterized by αL, a single scalar

which shapes the Beta distribution in the stick breaking process.

βL∼ GEM(αL)

φL
z∼ DP(αL, βL)

xi ∼ φL
zi

To properly construct an HDP for lexical emissions requires that we define

a distribution over the full, infinite, space of word spellings (βL). βL is

a vector whose dimensions correspond to word spellings. In this way, the

model can sample every new word from this distribution. One way this can

be done is with a character based language model where the set of characters

is fixed (perhaps to a specific language). The simplest possible model would

be a unigram character model. This requires we have a distribution over

characters in the language, and then the probability of any sequence is defined

by the product of the probabilities for each individual character: p(S) =∏
c∈S p(c). This very simplistic model assigns a probability to every string

in a language and that probability decreases with the length of the word.

Using this distribution (or a more sophisticated one) for the base measure in

our DP might have significant effects on the performance of the model.

In practice, we take a shortcut and assume we have seen all words in the

training data and use an UNK token for rare words. Initial experiments will

generate POS tags in lieu of actual words, in which case the entire space of

tags will be seen during training. But once words are emitted, we will replace

words with fewer than five occurrences with an UNK token. In this way, we
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can compute the frequency of words in our corpus and use this distribution as

the basis for βL. This provides a very simple way to initialize and implement

the model based on the available data, but means our implementation is

actually a Hierarchical Dirichlet. The Hierarchical Dirichlet is an HDP over

a finite set of atoms. Each level of the hierarchy still shares parameters

through shared base measures but these measures are finite and we define

them parametrically using the data.

In our implementation of the Hierarchical Dirichlet we will use a unigram

word distribution over the corpus for initializing βL. There are other initial-

izations (e.g. random, uniform, etc.) for distributions over the vocabulary,

which we did not evaluate. Additionally, as φL
z is the lexical distribution for

the category z, it inherits from βL and will therefore also be finite in our

experiments.

Generating CCG Categories

The second generating process in our model is that of category arguments Y

given a parent z:

βY∼ GEM(αY)

φY
z ∼ DP(αY, βY)

xi ∼ φY
zi

These distributions parallel those of the lexical emissions. We first define

a stick breaking process (parameterized by αY) from which we draw a base

distribution over argument categories in the corpus: βY. This serves as the

base measure for drawing parent category specific argument distributions,

φY
z , from which a specific argument, xi, is drawn.

While similar to the lexical distribution, the argument distribution presents

two additional challenges to being infinite: first, categories are highly con-

strained and structured objects, and second, we cannot initialize βY with

observed counts because the parses are not observed.

Structured Outcomes Producing structured objects requires that there

be a meaningful relationship between categories which share internal struc-

ture. We therefore require a mechanism for providing them probabilities

which is informed by the structure and ensures a shared reference between

the same category when used in different contexts.
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To handle the first issue, we will treat the space of categories as constrained

by those observed when parsing the training data. But, one could create a

model which would sample an unbounded set of novel categories by defining

the HDPs base measure in terms of a simple weighted CFG. This allows for

sampling new categories and assigning them a probability. We will illustrate

this here:

0.15 Cat → ( Cat \ Cat )

0.05 Cat → ( Cat / Cat )

0.40 Cat → N

0.40 Cat → S

Given a simple weighted CFG like the one above (written here with arbi-

trary probabilities) we can generate a CCG category with probability p by

randomly sampling rewrite rules from the above grammar (and multiplying

their rule probabilities to obtain p) until the derivation terminates in a string

over the terminal alphabet Σ ={N, S, /, (,)}. In practice, atomic arguments

are more common than complex ones and complex results are more common

than complex arguments. Further research might investigate using a larger

grammar which allows for capturing these interactions and assigning them

different probabilities. Because there are two rules in the grammar which

allow a Cat to introduce new Cats as results and arguments, these rules can

be applied an arbitrary number of times to produce arbitrarily complex or

recursively deep categories. In this way, there is no longest or most complex

category licensed by the grammar, allowing for a distribution over the infinite

space of categories.

Initializing the Argument Distributions Second, unlike lexical items

(words or POS tags, which we can observe in the corpus to compute an initial

distribution, the sentences are unlabeled, and as such, there is no gold data

from which to estimate initial argument distributions. Unlike our baseline

model which was initialized with a uniform distribution over outcomes (sec-

tion 5.3), we initialize this distribution by assuming a uniform distribution

over the sentences in the training data and a uniform distribution over the

parses for a given sentence produced using the induced lexicon. Although a

uniform distribution over outcomes is a simple baseline, it does not incor-

porate any of the grammar’s biases into the model. A uniform distribution
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over parses will bias the initial model towards the most common/useful con-

structions in the grammar.

Using this assumption, we compute pseudocounts for every argument in

every training sentence and normalize. Specifically, the pseudocount for a

given argument production within a specific chart item in a chart’s forest

is computed analogously to the standard inside-outside algorithm. Unlike

inside-outside, which uses probabilities to compute pseudocounts, our ini-

tialization will recurse through the parse forest to count, for every chart

item, the number of parses that involve this item. These “observed” counts

will be then be divided by the total number of parses for the sentence to

compute an initial distribution.

We know the total number of parses in the chart (Total), so our goal is to

assess how much influence a specific chart item has on the chart as a whole.

So, for each chart item Parent in each cell chart[i][j], we consider each split

point k (i ≤ k < j), and each rule Parent → Left Right (if chart[i][k] contains

a chart item Left and chart[k + 1][j] an item Right). We first compute the

number of inside parses each child has (Left .parses and Right .parses). The

inside parses are computing by summing over all split points, and all left and

right children at that split point. Next, analogously to the outside probability

computation, we compute the number of parses that contain Parent at the

given span. More precisely, a chart item’s outside parses equal the product

of its parent’s outside parses and sister’s parses summed over every (parent,

sister) pair the given chart item has in the forest. We multiply the number of

outside parses (Parent .outside) with the number of inside parses (Left .parses

and Right .parses) and divide by the total number of parses in the chart

(Total).

CountParent→Left Right = Parent .outside × Left .parses × Right .parses

We then renormalize this count (divide it by Total) to get the fraction of

parses that use a particular rule instantiation. These fractional counts can

then be summed over all instantiations of a particular rule (i.e. all splits in

the data i, k, j) to compute the expected count for the rule in this sentence.

These expected counts are used to initialize the argument distribution. It

computes the relative frequency of a specific rule in the grammar being used

within a specific chart. In this way, chart items which are used by a larger
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percentage of the parses in a chart will contribute more than those used

infrequently.

MLE Parameters

Finally, we describe how to initialize and update the MLE distributions over

the categories generated by TOP, over rule types (T), and over the combi-

nators (C).

Initialization The distribution over categories generated by TOP is simply

set to a uniform distribution over the only two allowed outcomes: N and

S. For the rule types we need to define a distribution conditioned on each

of the CCG categories. We assume these distributions are uniform (over

the possible expansions Lex, Unary, Left, Right). For the distribution over

combinators, we need a distribution conditioned on every (parent, argument)

pair. Again, we assume this is a uniform distribution, but we define it over

the set of combinators seen with the parent P and the argument X in the

parse forests created during training. Because the set of combinators is fixed,

this could easily be replaced with a uniform distribution over all combinators

which the model then quickly learns to refine.

Training Updating these distributions is done via the inside-outside algo-

rithm. We compute pseudocounts for every outcome of every distribution

and normalize between rounds. This is in contrast to the variational EM

that will be used for all other distributions (section 6.3.3).

6.3.2 Hyperparameters

When defining the HDP, new categories/words are drawn from H and given

a probability βk. We denote these distributions βY for arguments, and βL for

lexical emissions. These are then used to define the mean for the next DP in

the hierarchy. The DP also requires a notion of variance, or precision, which

determines how similar individual draws will be. This precision is determined

by the magnitude of the hyperparameter αY. We have an identical parameter

αL for controlling variance in the lexical distribution βL). αL controls how

much evidence is necessary for a distribution of lexical productions to diverge

from a unigram base DP over terminal symbols.
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These α parameters can have a significant effect on the performance of a

model, but since each distribution could have its own set of hyperparameters,

we cannot feasibly optimize them individually. For this reason, we follow the

example of Liang et al. [129] and use schemes for specifying their values. For

simplicity, we use the same scheme for setting the values for αL as for αY. A

proper search or optimization over parameters may yield better results, but

our primary goal is to limit the number of tunable parameters in our model.

We present initial experiments where we vary the value of αY as a function

of the number of outcomes allowed by the grammar for argument categories

or the corpus in the case of terminal symbols in section 7.1. Specifically,

we set αY = np for conditioning contexts with n outcomes, following Liang

et al. Similarly, we set αL = np for the lexical emissions where n is the

number of lexical types (part-of-speech initially) in the corpus. Since Liang

et al. [129] found that the ideal value for α appears to be super-linear but

sub-quadratic in n, we present results where p takes the values 0, 1.0, 1.5,

and 2.0 to explore the range from uniform to quadratic. This setting for p is

the only free parameter in the model. By controlling precision, we can tell

the model to what extent global corpus statistics should be trusted.

One obvious concern with this scheme for setting the hyperparameters is

that as the space of outcomes n grows, the value of the hyperparameter

grows polynomially in n, with p ≤ 2. Because the hyperparameter limits the

variance between draws from the base measure and specifies the amount of

evidence that is required to diverge from the base distribution, the larger the

value, the less variance is permitted and the harder it is to learn an empirical

distribution. In the extreme case, all draws are forced to be identical to the

mean of the base distribution, and learning is made effectively impossible,

as the amount of empirical observations required to diverge from the base

measure will also grow in n2. This becomes a problem when lexicalizing

the emissions, as we replace the set of ∼30-50 part-of-speech tags with the

size of the vocabulary of a language (V ), and V 2 will be many orders of

magnitude larger than we have sentences in our training data. For this

reason, experiments later in this thesis (Chapter 7.2.1) will set αL and αY to

a constant (2500). It is possible that curriculum learning techniques [49, 130]

or grid search might provide a better mechanism for choosing and tuning this

value.
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6.3.3 Variational EM

One advantage of the argument model is that it only requires a single distri-

bution over categories for each binary tree. In contrast to similar proposals

for CFGs [129], which impose no formal restrictions on the non-terminals

A, B, C that can appear in a rewrite rule A→ B C, this greatly simplifies

the modeling problem (yielding effectively a model that is more akin to non-

parametric HMMs), since it avoids the need to capture correlations between

different base distributions for Y and Z. In contrast, Liang et al. [129] use

a CFG and attempt to avoid modeling correlations by factorizations like

p(B C) = p(B)p(C).

HDPs need to be estimated with approximate techniques. As an alterna-

tive to Gibbs sampling [121], which is typically very slow and is only exact

in the limit, variational inference algorithms [131, 132] traditionally estimate

the parameters of a truncated model to maximize a lower bound of the log-

likelihood of the actual model. This allows for factorization of the model and

a training procedure analogous to the inside-outside algorithm [113], allowing

training to run very quickly and in a trivially parallelizable manner.

As briefly mentioned earlier, we initialize our base measure for lexical emis-

sions with the empirical unigram counts, and our base measure for CCG

arguments with frequency counts from the parses produced on the training

data. Training is non-convex and, therefore, there are many local optima the

model may converge to. We did not explore random initialization and how

the model’s performance might be affected. Instead, we explored two options:

first, we initialized all distributions to be uniform over observed outcomes,

and second, we initialized all distributions with empirical frequency counts

from the training data (Section 6.3.1). We found the latter performed better.

During training, all distributions are updated, including the re-estimation of

the base DPs.

In variational inference, multinomial weights W take the place of probabil-

ities [129]. Specifically, the probability of outcome Y given parent P, PP(Y),

is replaced with WP(Y ). The weights for an outcome Y with conditioning

variable P are computed by summing pseudocounts with a scaled mean vec-

tor from the base DP. The computation involves moving in the direction

of the gradient of the Dirichlet distribution, which results in the following

(non-exponentiated) difference of Digammas where Ψ(x) = d
dx

log Γ(x):
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Without HDP:

WP (Y ) = E logφP (Y ) = Ψ(C(P,Y))−Ψ(C(P, ∗))
With HDP:

WP (Y ) = Ψ(C(P,Y) + αPβY )−Ψ(C(P, ∗) + αP )

Here, we have used C(P,Y) to denote the pseudocounts (expected counts)

for seeing argument Y with parent P. These are computed using the standard

inside-outside algorithm. Next, the normalization is performed over the sum

of the pseudocounts for parent P with any argument. We denote this as

C(P, ∗) where the * indicates that any and all arguments should be counted.

Importantly, the Digamma and multinomial weights comprise a rich-get-

richer scheme, biasing the model against rare outcomes. In addition, since

variational inference requires the same two step (1. compute counts 2. nor-

malize) process as EM, it is trivially parallelizable. The counts are computed

by the inside-outside algorithm on a per sentence level and then aggregated.

This means the computation can be split into N/c chunks for N sentences

and c cores. This divide-and-conquer approach lets us compute the counts in

small parallel batches before aggregating them and updating the distributions

via the equation above to complete one iteration of training. In practice, by

limiting ourselves to training and testing our models on the short sentences

(up to 15 words not counting punctuation) in each of the corpora, training

takes between one minute to at most three hours on a single 12-core machine

(with 96GB of RAM) depending on corpus size. The size of each corpus is

presented in Table 7.1. This computation time will grow as a function of the

grammar’s complexity, amount of data, and sentence length in the upcoming

sections.

6.4 Capturing More Complicated

Phenomena

In our experiments with a PCFG model (Chapter 5), we found that simpler

grammars were the best performing. We therefore kept a simple paradigm

for initial experiments with our new argument factored CCG model (Chapter

7.1). Given that our new model greatly outperforms the PCFG, it is appro-

priate to re-examine the model’s performance when higher arity categories,

composition, and type-raising are included. Further, since the HDP better
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handles sparsity and smoothing, we will investigate the effects of lexicaliza-

tion and try to capture constraints imposed by punctuation [133].

The next few sections detail how the model can be extended to handle these

phenomena. These extensions will give rise to the final and best performing

model in this thesis, which will allow us to revisit our original motivation,

the creation of a cog to replace supervised parsing. Specifically, in section 7.2

we will perform a novel labeled dependency evaluation of these extensions.

6.4.1 Increasing Grammatical Complexity

We are interested in allowing the model to explore the use of composition of

arity two (B2) and three (B3), and in allowing complex arguments (section

4.4.3) as well as type-raising. This translates to removing restrictions on

parse operations and induction, while increasing the number of rounds of

lexicon induction performed.

These changes present the model with a much broader and more ambiguous

search space than we entertained for the PCFG (Figure 5.1). Additionally,

unlike in that model, we will investigate allowing the semantically necessary

preposition vs. possessive ambiguity of categories of the form (X\X)/X and

(X/X)\X (removing restriction 7 of Section 4.2.2). This introduces the pos-

sessive for (N/N)\N for English and a preposition for Japanese (N\N)/N,

which uses postpositions. This also introduces both (S\S)/S and (S/S)\S for

every language.

We only introduce a a limited set of complex arguments: S\N and S/N.

This means we are not allowing non-modifier categories with arguments of

the form S|S or N|N. Categories that take modifiers as arguments but are

not themselves modifiers (e.g. (S\N)/(N\N)) do exist in CCGbank, but

are very rare. In particular, the only category of this form in CCGbank

is ((S\N)/(N\N))/N which only occurs a total of 12 times (for the words is

and was).

6.4.2 Punctuation

Spitkovsky et al. [51] performed a detailed analysis of punctuation for de-

pendency-based grammar induction and proposed a number of constraints

that aimed to capture the different ways in which dependencies might cross
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constituent boundaries implied by punctuation marks.

A constituency-based formalism like CCG allows us instead to define a

very simple, but effective Dirichlet Process (DP) based Markov grammar

that emits punctuation marks at the maximal projections of constituents.

We note that CCG derivations are binary branching and that virtually every

instance of a binary rule in a normal-form derivation combines a head X|Y
or X with an argument Y or modifier X|X.

In these two configurations the punctuation may appear between the two

combining categories or after them. this allows for four possible attachment

points in each case. For X/Y Y, the punctuation between them can attach

to either category, and the punctuation following to either the argument Y

or result X. Analoguously, for X X\X, the punctuation between them can

attach to either category, and the punctuation that follows can attach to

either the modifier X\X or the result X.

The important insight is that when a punctuation mark appears before a

category, it can only belong in one of three states:

1. Either the category will be taken as an argument of (or serve as a

modifier to) a constituent that immediately precedes it

2. The category will be a constituent’s argument or modifier

3. The category spans the entire sentence

By insisting that categories attach at the maximal projection, we eliminate

extraneous attachments. In the final case, the punctuation mark is attached

before applying the rule TOP→ X. We have the same constraint for all unary

rules (type-raising/type-changing), that is, they should only be applied after

punctuation has been attached.

Without reducing the set of strings generated by the grammar, we can,

therefore, assume that in the binary case, punctuation marks can only be

attached to the argument Y or the adjunct X|X. Here, Y and X|X are maximal

projections, since the head word of the parent X comes from the child X/Y

(or X).

Y
, ,

X/Y

X

Y

X\X
, ,

X

X

X\X
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This constraint does not impose any restrictions on the set of allowed

strings, but only reduces redundant, ambiguous analyses. In every parse

produced by our grammar, every instantiation of a binary rule includes one

category being taken as an argument or being modified by another category.

If we had only the first comma in the two examples above, there would

be two identical analyses for each string: the comma could attach to the

left, yielding ((X/Y ,) Y) or ((X/X ,) X), or to the right, yielding (X/Y (,

Y)) or (X/X (, X)). This restriction removes that spurious redundancy by

forcing attachment to the argument (X/Y (, Y)) or the modifier ((X/X ,) X).

This restriction also biases the grammar towards analyses where punctuation

marks bracket meaningful constituents.

To model this, for each maximal projection (i.e. whenever we generate a

non-head child) with category C, we first decide whether punctuation marks

should be emitted (M = {true, false}) to the left or right side (Dir) of C.

Since there may be multiple adjacent punctuation marks (... .”), we treat this

as a Markov process in which the history variable captures whether previous

punctuation marks have been generated or not. We should note that nothing

about this restriction requires adjacent marks to be generated by or attached

to the same tree. They might both attach to different, adjacent, constituents

which combine later in the parse. Finally, we generate an actual punctuation

mark wm:

p(M | Dir) ∼ DP (α, p(M))

p(M | Dir ,Hist) ∼ DP (α, p(M | Dir))

p(wm | Dir ,Hist ,M = True) ∼ DP (α, p(wm))

p(wm | Dir ,Hist ,C,M = True) ∼ DP (α, p(wm | Dir ,Hist))

The base distributions are p(M), the global probability of a constituent

emitting punctuation, and p(wm), the observed probabilities of punctuation

marks.

The only exception to this punctuation treatment are the symbols # and

$. These are treated as ordinary lexical items for which CCG categories will

be induced by the regular induction algorithm. All other punctuation follows

this scheme, including quotes and brackets. Commas and semicolons (,, ;)

can act both as punctuation marks generated by this Markov grammar, and

as conjunctions with lexical category conj.
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6.4.3 Lexicalization

As discussed earlier (section 6.3.1), our work until now, in keeping with most

work in grammar induction, treats POS tags t rather than words w as the

terminals generated by lexical categories c. The advantage of this approach

is that tag-based emissions p(t | c) are a lot less sparse than word-based

emissions p(w | c). It is, therefore, beneficial to first train a model that emits

tags rather than words [134], and then to use this simpler model to initialize

a lexicalized model that generates words instead of tags.2

To switch our lexical emissions, expected lexical counts for words are com-

puted using their tag probabilities, p(t | c), during the E-step. Those counts,

having been allocated to specific (word, category) pairs, can be normalized

during the M-Step to estimate p(w | c). Inside-outside can then continue as

before. The only effect on the variational inference discussed is that we are

now computing multinomial weights for individual (word, category) pairs,

including an UNK token, rather than over (tag, category) pairs.

Many words, e.g. prepositions and verbs, differ systematically in their

preferred syntactic role from that of their part-of-speech tags. For example,

both of and with are tagged as IN, but our models will correctly discover

that of is far more likely to be generated as a noun attaching preposition,

(N\N)/N, and with by a verb attaching category, (S\S)/N. We see a similar

effect with the words said and fell which are both tagged as VBD. Both

words have a strong bias to be transitive but said takes a sentence as its

second argument, while fell takes a noun:

IN VBD

Word Category p(c | w) Word Category p(c | w)

of (N\N)/N 0.60 said (S\N)/S 0.35

(S\S)/N 0.17 N\N 0.12

N/N 0.09 S\N 0.11

with (S\S)/N 0.56 fell (S\N)/N 0.44

(N\N)/N 0.17 S\N 0.28

N/N 0.13 (N\N)/N 0.01

2Our choice of this scheme which switches to generating words rather than generating
both tags and words (p(t | c) × p(w | t, c)) was based on poor empirical results where we
found it difficult to have the model diverge from p(t | c) given the new lexical evidence.
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These results are for the model BP&L
3 , discussed and evaluated fully in the

next chapter (section 7.2.1).

6.5 Conclusions

This chapter presented a novel factorization of CCG (the argument model).

We present MLE and HD(P) formulations of the model. We outline both our

current training procedures with variational EM as well as a description for

how non-parametric extensions might be implemented. Finally, we provide

three ways in which the argument model can be extended to incorporate

additional grammatical complexity, punctuation and lexicalization. In the

next chapter, we evaluate the MLE and HD(P) formulations of our model in

10 languages and demonstrate the utility of our extensions when evaluated

against English CCGbank.
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Chapter 7

Multilingual Evaluation

As is standard for this task, we evaluate our systems against a number

of different dependency treebanks, and measure performance in terms of the

accuracy of directed dependencies (i.e. the percentage of words in the test

corpus that are correctly attached). To demonstrate the performance across

a number of languages we use the data from the PASCAL challenge for

grammar induction [63], the data from the CoNLL-X shared task [135] and

Goldberg’s Hebrew corpus [136].

7.1 Unlabeled Dependency Evaluation

We evaluate our system on 13 different languages. In each case, we follow the

test and training regimes that were used to obtain previously published re-

sults in order to allow a direct comparison. We compare our system to the re-

sults presented at the PASCAL Challenge on Grammar Induction [63, 118],1

as well as to Gillenwater et al. [137] and Naseem et al. [138]. We use Nivre’s

[61] Penn2Malt implementation2 of Collins’ [64] head rules to translate the

WSJ Penn Treebank [1] into dependencies. Finally, when training the MLE

version of our model, to prevent issues with numerical precision we define a

small rule probability (e−15) that prevents any rule used during training from

Work in this chapter was first published in Y. Bisk and J. Hockenmaier, “An HDP
Model for Inducing Combinatory Categorial Grammars,” Transactions of the Association
for Computational Linguistics, pp. 75-88, 2013.[119] and Y. Bisk and J. Hockenmaier,
“Probing the linguistic strengths and limitations of unsupervised grammar induction,” in
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Beijing,China, July 2015. [133] and is reprinted here with
permission by the copyright holder.

1Numbers are from personal correspondence with the workshop organizers. The previ-
ously published numbers are not comparable to literature due to an error in the evaluation.
http://wiki.cs.ox.ac.uk/InducingLinguisticStructure/ResultsDepComparable

2http://w3.msi.vxu.se/~nivre/research/Penn2Malt.html
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shrinking to zero. When performing analysis on English and Portuguese we

found no effect on performance when varying the small rule value between

e−7 to e−20.

7.1.1 PASCAL Challenge on Grammar Induction

In Table 7.1, we compare the performance of the basic Argument model

(MLE), of our HDP model with four different settings of the hyperparameters

(Section 6.3.2) and of the systems presented in the PASCAL Challenge on

Grammar Induction [63]. The systems in this competition were instructed to

train over the full data set, including the unlabeled test data. The competing

systems include our CCG PCFG model (PCFG) (Section 5.5.3) from the

previous chapter, Cohn and Blunsom’s [36] re-implementation of Klein and

Manning’s [41] DMV model in a tree-substitution grammar framework (BC),

as well as three other dependency based systems which either incorporate

Naseem et al.’s [37] rules in a deterministic fashion [139], rely on extensive

tuning on the development set [43] or incorporate additional tokens from

Wikipedia to estimate model parameters [140]. We ignore punctuation for

all experiments reported in this section of the thesis, but since the training

data (but not the evaluation) includes punctuation marks, participants were

free to choose whether to include punctuation or ignore it.

While our PCFG is the only other system with directly interpretable lin-

guistic output, we also include a direct comparison with Blunsom and Cohn

(BC), whose Tree-Substitution Grammar (TSG) representation is equally ex-

pressive to ours. Finally, we present a row with the maximum performance

among the other three models. As we have no knowledge of how much data

was used in the training of other systems, we simply present results for sys-

tems trained on length 15 (not including punctuation) sentences and then

evaluated at lengths 10 and 15.
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The MLE version of our model shows rather variable performance: al-

though its results are particularly bad on Basque (Eu), it outperforms both

the PCFG and BC on some other settings. By contrast, the HDP system is

always better than the MLE model. It outperforms all other systems on half

of the corpora. On average, it outperforms the PCFG and BC by 10.3% and

9.3% on length ≤10, or 9.7% and 7.8 % on length ≤15 respectively.

The initialization is not random (Section 6.3.1) and so there is no vari-

ability between runs of the HDP unless the hyperparameters are changed.

Unfortunately, it is not clear how to automatically choose between models

or hyperparameter settings as no clear pattern is immediately apparent, nor

does performance correlated with the model’s likelihood. Making these de-

cisions automatically is a potentially fruitful direction for future work [45].

The main reason why our system does not outperform BC by an even

higher margin is the very obvious 11.4%/11.5% deficit on Slovene. However,

the Slovene dependency treebank seems to follow a substantially different

annotation scheme. In particular, the gold standard annotation of the 1,000

sentences in the Slovene development set treats many of them as consisting

of independent sentences (often separated by punctuation marks that our

system has no access to), so that the average number of roots per sentence

is 2.7:

constituents attach. In addition to the standard CCG
scheme, we have identified five main styles of con-
junction in our data (Figure 2), although several cor-
pora distinguish multiple types of coordinating con-
junctions which use different styles (not all shown
here). Since our system has explicit rules for coordi-
nation, we transform its output into the desired target
representation that is specific to each language.

7 Experiments

We evaluate our system on 13 different languages.
In each case, we follow the test and training regimes
that were used to obtain previously published results
in order to allow a direct comparison. We com-
pare our system to the results presented at the PAS-
CAL Challenge on Grammar Induction (Gelling et
al., 2012)6, as well as to Gillenwater et al. (2011)
and Naseem et al. (2012). We use Nivre (2006)’s
Penn2Malt implementation of Collins (2003)’s head
rules to translate the WSJ Penn Treebank (Marcus
et al., 1993) into dependencies. Finally, when train-
ing the MLE version of our model we use a simple
smoothing scheme which defines a small rule proba-
bility (e�15) to prevent any rule used during training
from going to zero.

7.1 PASCAL Challenge on Grammar
Induction

In Table 1, we compare the performance of the ba-
sic Argument model (MLE), of our HDP model with
four different settings of the hyperparameters (as ex-
plained above) and of the systems presented in the
PASCAL Challenge on Grammar Induction (Gelling
et al., 2012). The systems in this competition were
instructed to train over the full dataset, including the
unlabelled test data, and include Bisk and Hocken-
maier (2012a)’s CCG-based system (BH) to Cohn et
al. (2010)’s reimplementation of Klein and Manning
(2004)’s DMV model in a tree-substitution gram-
mar framework (BC), as well as three other de-
pendency based systems which either incorporate
Naseem et al. (2010)’s rules in a deterministic fash-
ion (Søgaard, 2012), rely on extensive tuning on

6Numbers are from personal correspondence with the orga-
nizers. The previously published numbers are not comparable
to literature due to an error in the evaluation. http://wiki.
cs.ox.ac.uk/InducingLinguisticStructure/
ResultsDepComparable

the development set (Tu, 2012) or incorporate mil-
lions of additional tokens from Wikipedia to esti-
mate model parameters (Marecek and Zabokrtsky,
2012). We ignore punctuation for all experiments
reported in this paper, but since the training data
(but not the evaluation) includes punctuation marks,
participants were free to choose whether to include
punctuation or ignore it.

While BH is the only other system with directly
interpretable linguistic output, we also include a di-
rect comparison with BC, whose TSG representa-
tion is equally expressive to ours. Finally we present
a row with the maximum performance among the
other three models. As we have no knowledge of
how much data was used in the training of other sys-
tems we simply present results for systems trained
on length 15 (not including punctuation) sentences
and then evaluated at lengths 10 and 15.

The MLE version of our model shows rather vari-
able performance: although its results are particu-
larly bad on Basque (Eu), it outperforms both BH
and BC on some other settings. By contrast, the
HDP system is always better than the MLE model.
It outperforms all other systems on half of the cor-
pora. On average, it outperforms BH and BC by
10.3% and 9.3% on length 10, or 9.7% and 7.8 %
on length 15 respectively. The main reason why our
system does not outperform BC by an even higher
margin is the very obvious 11.4%/11.5% deficit on
Slovene. However, the Slovene dependency tree-
bank seems to follow a substantially different anno-
tation scheme. In particular, the gold standard an-
notation of the 1,000 sentences in the Slovene de-
velopment set treats many of them as consisting of
independent sentences (often separated by punctua-
tion marks that our system has no access to), so that
the average number of roots per sentence is 2.7:

>>

“
verjeti

believe
ti
I

,
,

⟨⟨
”

je

is
mehko

soft
rekla
said

When our system is presented with these short
components in isolation, it oftentimes analyzes them
correctly, but since it has to return a tree with a sin-
gle root, its performance degrades substantially.

We believe the HDP performs so well as com-
pared to the MLE model because of the influence
of the shared base distribution, which allows the

When our system is presented with these short components in isolation,

it oftentimes analyzes them correctly, but since it has to return a tree with

a single root, its performance degrades substantially. We did not investigate

ways to determine if punctuation indicates that a verb should be detached,

but using a small amount of seed knowledge about the corpus might provide

large gains in performance.

We believe the HDP performs so well as compared to the MLE model

(Figure 7.1) because of the influence of the shared base distribution, which

allows the global category distribution to influence each of the more specific

distributions. One example of this effect is when choosing what argument

Y to produce a parent category P, i.e. the distribution p(Y | P). While
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Arabic Danish Slovene Swedish Dutch Basque Portuguese WSJ Childes Czech Ave

PCFG 43.7 43.8 43.9 57.0 43.6 39.6 59.6 59.6 59.8 38.9 48.95

MLE 42.9 39.2 41.1 59.7 47.2 26.5 59.7 52.4 51.9 45.8 46.64

Best HDP-CCG 65.1 58.5 46.4 66.9 54.4 45.0 62.9 62.9 73.3 50.7 58.61

0

20

40

60

80

Arabic Danish Slovene Swedish Dutch Basque Portuguese WSJ Childes Czech Ave

CCG  PCFG MLE Argument Model Best HDP-CCG

�1

Figure 7.1: Comparison of our PCFG, MLE argument model and the best
of our HDP models’ performances on directed accuracies (length 15) for 10
languages.

S is a more common category, N is a more common argument. This pa-

rameter sharing provides an informative bias to rare categories being used

to complete a parse. The same is true with lexical distributions where an

infrequent lexical category can fall back on the unigram distribution when

generating. Further, hyperparameters provide a very simple knob that has

a substantial effect on performance. A side effect of the hyperparameters is

that their strength also determines the rate of convergence. This may be

one of the reasons for the high variance seen in the four settings tested, al-

though we again should note that since our initialization is always uniform

(Section 6.3.1) in the parse forest, and not random, so consecutive runs do

not introduce variance in the model’s performance.

7.1.2 Systems with Linguistic Constraints

Since our induction algorithm is based on the knowledge of which POS tags

are nouns and verbs, we compare our approach to both that of Naseem et

al. (Section 4.3) who use universal knowledge to constrain the learner, and

against Boonkwan and Steedman (Section 4.3), who incorporate knowledge

about the lexicon into their system.

Naseem et al.: Universal Knowledge In Table 7.2 we compare our sys-

tem to Naseem et al. [37], who present a non-parametric dependency model

that incorporates thirteen universal linguistic constraints. Three of these

constraints correspond to our rules that verbs are the roots of sentences and

may take nouns as dependents, but the other ten constraints (Sec. 4.2.2) have
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no equivalent in our system. Although our system has less prior knowledge,

it still performs competitively.

Sl Es Da Pt Sv
∼#Tokens 3.8K 4.2K 9.5K 15K 24K

N10 50.9 67.2 51.9 71.5 63.3
HDP 56.6 62.1 51.5 74.7 69.8

Table 7.2: A comparison of our system with Naseem et al. (2010), both
trained and tested on the length 10 training data from the CoNLL-X Shared
Task.

On the WSJ, Naseem et al. demonstrate the importance and effect of

the specific choice of syntactic rules by comparing the performance of their

system with hand crafted universal rules (71.9), with English specific rules

(73.8), and with rules proposed by Druck et al. [141] (64.9).

The performance of Naseem et al.’s system drops very significantly as

sentence length (and presumably parse complexity) increases, whereas our

system shows significantly less decline, and outperforms their universal sys-

tem by a significant margin. We saw a similar stability in the PCFG model

from before (Figure 5.3).

≤ 10 ≤ 20

Naseem Universal Rules 71.9 50.4

Naseem English Rules 73.8 66.1

HDP-CCG 68.2 64.2

HDP-CCG (train ≤ 20) 71.9

In contrast to Spitkovsky et al. [49], who reported that performance of their

dependency based system degrades when trained on longer sentences, our

performance on length ≤10 sentences increases to 71.9 when we train on

sentences up to length ≤20. This is a particularly promising result. We

believe that this correlates to introducing far more evidence for prepositional

phrases and their internal noun-phrases, a pair of very common construction

in Newswire text.

Boonkwan and Steedman: Knowledge from a Linguist Another sys-

tem that is also based on CCG, but captures significantly more linguistic
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knowledge than ours, was presented by Boonkwan and Steedman [38], who

achieve an accuracy of 74.5 on WSJ10 section 23 (trained on sections 02-

22). When evaluating our model on the same train/test split, our system

achieves an accuracy of 68.4. Unlike our approach, Boonkwan and Steedman

do not automatically induce an appropriate inventory of lexical categories,

but use a questionnaire that defines prototype categories for various syntac-

tic constructions, and requires manual engineering of which POS tags are

mapped to what categories to generate a language-specific lexicon. However,

their performance degrades significantly when only a subset of the questions

is considered. Using only the first 14 questions, covering facts about the

ordering of subjects, verbs and objects, adjectives, adverbs, auxiliaries, ad-

positions, possessives and relative markers, they achieve an accuracy of 68.2,

which is almost identical to ours, even though we use significantly less ini-

tial knowledge. However, the lexicons we present below (Table 7.4) indicate

that we are in fact learning many of the very exact details that in their sys-

tem are constructed by hand. The remaining 14 questions in Boonkwan and

Steedman’s questionnaire cover less frequent phenomena such as the order

of negative markers, dative shift, and pro-drop. The obvious advantage of

this approach is that this allows them to define a much more fine-grained in-

ventory of lexical categories than our system can automatically induce. We

also stipulate that for certain languages knowledge of pro-drop could play

a significant role in the success of their approach: if complete sentences are

allowed to be of the form S\N or S/N, the same lexical category can be used

for the verb regardless of whether the subject is present or has been dropped.

Sl Es Da Pt Sv
#Tokens 3,857 4,230 9,549 15,015 24,021

G10 51.2 62.4 47.2 54.3 48.6
HDP-CCG 57.9 65.4 49.3 73.5 73.2

Bg WSJ Nl Ja De
#Tokens 38,220 42,442 43,405 43,501 77,705

G10 59.8 64.4 47.5 60.2 47.4
HDP-CCG 66.1 70.3 56.2 64.1 68.4

Table 7.3: A comparison of our system with Gillenwater et al. (2010), both
trained on the length 10 training data, and tested on the length 10 test data,
from the CoNLL-X Shared task.
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7.1.3 Additional Languages

In order to provide results on additional languages, we present in Table 7.3 a

comparison to the work of Gillenwater et al. [142] (G10), using the CoNLL-

X Shared Task data [135]. Following Gillenwater et al. , we train only

on sentences of length 10 from the training set and evaluate on the test

set. Since this is a different training regime, and these corpora differ for

many languages from that of the PASCAL challenge, numbers from Table 7.1

cannot be compared directly with those in Table 7.3.

7.1.4 Automatic Tagging/Segmentation in Hebrew

Finally, we are unaware of any existing work on grammar induction in He-

brew. Goldberg (2011) [136] introduced a small Hebrew corpus which is

available in two formats: 1. Gold POS tags and morpheme segmentations

2. Automatically tagged and segmented morphemes. As a morphologically

rich language, the segmentation of words into morphemes is often difficult

and an automatic segmentation should introduce far more noise than auto-

matic tagging in language like English. We applied our model to the gold

annotated version of Goldberg’s Hebrew corpus and achieved an accuracy of

62.1 (trained and tested on all sentences length 10; 7,253 tokens) and 59.6

(length 15; 21,422 tokens). In this discussion, token refers to morpheme, not

the original white-space delimited words.

In the Shared Task experiments in Portuguese some automatically tagged

data was included as part of the corpus, but Hebrew provides us the oppor-

tunity to test both automatic tagging and segmentation on a low resource

language. Due to the limited amount of data, we present results where we

train and test on the union of the data at lengths 10 and length 15. This

corresponds to ∼6,000 and ∼18,000 tokens respectively. As there does not

exist a Universal POS mapping for Hebrew, we constructed one with help

from Yoav Goldberg (reproduced in Appendix A.1).

Gold Tags Auto Tags

0.0 57.4/56.7 55.9/48.8

1.0 62.1/59.6 59.2/54.3

1.5 57.6/57.4 52.6/54.9

2.0 33.9/51.1 31.7/48.7
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We notice that while performance does degrade it is not a substantial

drop, which is encouraging for our next steps, which further limit our access

to part-of-speech tags. In the future, this experiment should be scaled up to

a larger class of languages with varying morphological richness.

7.1.5 The Induced Lexicons

Since our approach is based on a lexicalized formalism such as CCG, our

system automatically induces lexicons that pair words (or, in our case, POS-

tags) with language-specific categories that capture their syntactic behavior.

If our approach is successful, it should learn the basic syntactic properties

of each language, which will be reflected in the corresponding lexicon. In

Figure 7.4 one sees how verbs subcategorize differently, how word ordering

differs by language, and how the attachment structures of prepositions are

automatically discovered and differ across languages.

In the induction algorithm a tremendous number of incorrect verbal cate-

gories are introduced for every language, and the model typically converges

converges on one that assigns most of its probability mass to the correct word

order. Interestingly, in contrast, in Arabic the model learns that word order

is variable, and therefore the verb must allow for both SVO and VOS style

constructions and splits the mass appropriately. We generally learn that ad-

positions (prepositions or postpositions) take nouns as arguments. In Czech,

PPs can appear before and after the verb, leading to two different categories

((S\S)/N and (S/S)/N). Japanese has postpositions that appear in preverbal

position ((S/S)\N), but when this category is assigned to nominal particles

that correspond to case markers, it effectively absorbs the noun, leading to a

preference for verbs that do not take any arguments (S), and to a misanalysis

of adjectives as verb modifiers (S/S).

Our lexicons also reflect differences in style: while Childes and the WSJ

are both English, they represent very different registers. We learn that sub-

jects are mostly absent in the informal speech and child-directed instructions

contained in Childes, leading to categories such as S for intransitive verbs

and S/N for transitive verbs, while effectively mandatory in the Wall Street

Journal, allowing us to infer S\N for intransitives and (S\N)/N for transitive

verbs instead. In principle, it is possible to have the model capture these

missing subjects by allowing parses to terminate in TOP→ S|N. We did not
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explore the effects of allowing these parses into our model. Later experiments

with complex arguments may indicate that the models presented here are not

powerful enough to learn when to use such an analysis.

7.2 Labeled Evaluation Against CCGbank

Hyperparameter Settings As noted previously, all of the following ex-

perimental results will be reported with hyperparameters (αL and αY) set

to a constant value of 2500. We are making this change from the schemes

explored in section 6.3.2 and Figure 7.1 because we are introducing words

as lexical emissions. This means it no longer makes sense to have hyperpa-

rameters set as a function of the size of the output. Instead, we tested three

constant values (1000, 2500, 5000) and found that the basic model we are

about to extend performed closest to the dependency evaluation in Section

7.1.2 with a constant of 2500. We will fix this hyperparameter setting for

experimental simplicity, but a more rigorous grid search might find better

parameters for the complex models.

Finally, all numbers henceforth, unless otherwise specified, will be based

on our labeled evaluation for CCGbank (Section 3.4). Therefore, they will

be lower, but much more informative than those we reported previously to

compare with the existing literature. This evaluation will allow for an in-

depth analysis in Section 7.2.2.

7.2.1 Evaluation

For our experiments, we will follow the standard practice in supervised pars-

ing of using WSJ Sections 02 through 21 for training, Section 22 for de-

velopment and error analysis, and a final evaluation of the best models on

Section 23. As noted in the induction section, the grammars induced grow

rapidly (Table 4.3) as complexity is added/allowed. Correspondingly, the

memory footprint required to keep all parse forests for the training data in

RAM quickly grows beyond the RAM we have available (96GB). For this

reason, we only train on sentences that contain up to 20 words (as well as

an arbitrary number of punctuation marks). All analyses and evaluation are

performed with sentences of all lengths unless otherwise indicated.
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Table 1

Args Base +Lexicalization +Punctuation +Punct&Lex + (X|X)|X

B1 A 34.2 35.2 36.3 36.9 36.8

B3 A 34.4 35.1 33.8 38.9 38.8

B1 C 33.0 34.9 33.2 35.7 35.8

B3 C 29.4 29.5 31.2 31.2 31.2

10

20

30

40

50

B1 Atomic B3 Atomic B1 Complex B3 Complex

Base +Lexicalization +Punctuation +Punct&Lex + (X|X)|X

�1

Figure 7.2: Labeled F1 performance for our model with and without complex
arguments, and our discussed enhancements for B1 and B3. Full results are
in Table 7.5.

Table 7.5 and Figure 7.2 show the performance of 20 different model set-

tings on Section 22 under the simplified labeled CCG-based dependency eval-

uation proposed in Section 3.4.2 (and undirected unlabeled evaluation), start-

ing with our original model (henceforth: B1, top left) which outperformed

the PCFG model on all languages (Table 7.1). We are now using our more

informative labeled evaluation to evaluate the effect of adding three model

extensions: increasing grammatical complexity (Section 6.4.1), punctuation

(Section 6.4.2), and lexicalization (Section 6.4.3).

We see that modeling punctuation and lexicalization both increase per-

formance. We also show, as noted previously, that removing the induction

restriction on (X/X)\X does not lead to a noticeable decrease in performance.

We also see that an increase in grammatical and lexical complexity is only

beneficial for the grammars that allow only atomic arguments, and only if

both lexicalization and punctuation are modeled. Allowing complex argu-

ments is generally not beneficial, and performance drops further if the gram-

matical complexity is increased to B3. Future work might try to allow these

categories in the grammar but discourage them in the prior, something we

did not explore here. Our further analysis will focus on the three bolded

models, B1, BC
1 (the best model with complex arguments) and BP&L

3 (the

best overall model), whose supertag accuracy, labeled (LF1) and unlabeled

undirected CCG dependency recovery on Section 23 are shown in Table 7.6.

We see that BC
1 and BP&L

3 both outperform B1 on all metrics, although the

unlabeled metric (UF1) perhaps misleadingly suggests that BC
1 leads to a
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Model Supertagging LF1 UF1

B1 59.2 34.5 60.6

BC
1 59.9 34.9 63.6

BP&L
3 62.3 37.1 64.9

Table 7.6: Test set performance of the final systems discussed in this Chapter
(Section 23)

greater improvement than the supertagging and LF1 metrics indicate.

Finally, to compare our models directly to a comparable unsupervised de-

pendency parser [37], we evaluate using the unlabeled dependencies produced

by Yamada and Matsumoto’s [143] head rules for Sections 02-21 of the Penn

Treebank (Table 7.7).3 Naseem et al. [37] only report performance on sen-

tences of up to length 20 (without punctuation marks) and train and test on

the same data.

Comparing these numbers to labeled and unlabeled CCG dependencies

on the same corpus (all sentences, hence, @∞), we see that performance

increases on CCGbank (the successive rows in the table) do not translate to

similar gains on these unlabeled dependencies.

While we have done our best to convert the predicate argument structure

of CCG into dependencies, there are many constructions which have vastly

different analyses and assumptions. This becomes obvious when naively at-

tempting to compare undirected attachments between CCGbank and those

obtained via Matsumoto’s head-finding rules, the two gold treebanks would

only obtain an F-score of 81.9%.

Effect of the Normal Form

Finally, our work has assumed parsing with a normal form: Eisner [88] when

using limited composition and without type-raising, or Hockenmaier and

Bisk [89] for the new extensions presented here. As normal forms constrain

ambiguity by eliminating redundant semantic analyses, they should have an

important impact on both the size of the search space and the performance

of the model.

In Table 7.8, we evaluate the effect of the normal-form parsing algorithm

3One may recall that in our previous comparison we use hyperparameter schemes and
report 64.2@20.
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CCGbank 02-21 WSJ2-21 DA
Model LF1 UF1 @10 @20 @∞

Naseem (Universal) 71.9 50.4
Naseem (English) 73.8 66.1

B1 33.8 60.3 70.7 63.1 58.4

BC
1 34.4 62.0 70.5 65.4 61.9

BP&L
3 38.3 66.2 71.3 65.9 62.3

Table 7.7: To perform a valid comparison to Naseem (2010) [37] we train
and test on the same data (Sections 02-21). Our goal is to compare perfor-
mance on CCGbank dependencies @∞ (left side) and CoNLL-style directed
attachments (right side).

Performance # of Parses
NF? ST LF1 UF1 Mean Median

B1 No 28.8 53.6 2.1e73 5.1e13
Yes 34.2 60.2 3.7e71 2.1e13

BP&L
3 No 57.9 33.1 58.8 8.4e82 3.1e15

Yes 63.1 38.8 65.7 5.6e79 6.6e14

BC
1 No 57.9 33.9 62.8 8.0e80 1.6e15

Yes 59.3 35.8 63.5 2.1e79 6.7e14

Table 7.8: We also evaluate the same three models without the normal form.
Normal-form parsing (NF) leads to significantly better performance and fewer
parses on section 22.

on B1 and our best model (BP&L
3 ). We see that normal-form parsing is fun-

damental to performance, and decreases the average number of parses by up

to three orders of magnitude. The importance of constraining the grammar

might be alleviated if it was possible to evaluate the 1-best dependency struc-

ture (which would require computing marginal probabilities over all distinct

dependency structures in the parse forest), rather than the 1-best derivation

as we are doing here. For this reason it is difficult to know if the lack of a

normal form disadvantages training, testing or both. It is possible the model

learns much of the correct structure, but the prediction mass gets fragmented

during evaluation. This is an open question, as we cannot recover this infor-

mation from the model’s distributions, but the utility of the normal form is

clear.
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7.2.2 English CCGbank Analysis

By using our CCGbank simplification (section 3.4.2), we can perform a more

detailed analysis on the results we have just presented. While the perfor-

mance of the models with lexicalization and punctuation clearly improved,

the question remains as to which constructions did improve and which are

still being lost. We first perform an error analysis based on supertag accuracy

to look for missing categories from our complex model. Recall that supertag

accuracy (Section 3.4) looks at whether a word is given the correct CCG

category and upper-bounds labeled dependency evaluation. Finding many

categories conspicuously absent, we try to isolate where the gains are coming

from in a dependency evaluation, and finally perform a corpus analysis to

identify categories missing entirely from our search space.

Supertagging error analysis

We first consider the lexical categories that are induced by the models. Ta-

ble 7.9 shows the accuracy with which they recover the most common gold

lexical categories, together with the category that they most often produced

instead. We see that the simplest model (B1) performs best on N, and per-

haps overgenerates (N\N)/N (noun-modifying prepositions) while the overall

best model (BP&L
3 ) outperforms both other models only on intransitive verbs.

The most interesting component of our analysis is the long tail of construc-

tions that must be captured in order to produce semantically appropriate

representations. We can inspect the confusion matrix of the lexical cate-

gories that the model fails to use to obtain insight into how its predictions

disagree with the ground truth, and why these constructions may require

special attention when developing models in the future or augmenting the

input. Table 7.10 shows the most common CCGbank categories that were

in the search space of some of the more complex models (e.g. BC
3 ) but were

never used by any of the parsers in a Viterbi parse. These include posses-

sives, relative pronouns, modals/auxiliaries, control verbs and ditransitive.

We show the categories that the BC
1 model uses instead. The gold categories

shown correspond to the bold words in Table 7.10.

We can now easily analyze some of the simple mistakes the model has

made. Row one in Table 7.10 shows the model confusing the headedness of

possessives. Row two requires the model learn that Before, or prepositions,
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can transform an introductory clause into a sentence modifier. This is par-

ticularly tricky in news text which has many sentences and clauses linked by

conjunctions or punctuation.

Row three contains two common mistakes. The system is tasked with

producing a modifier of noun modifiers ((N/N)/(N/N)). The most common

mistake is easy to understand as the system produces a simple adjective

category (N/N) for both very and tall in the sentence very tall man. This

simple set of modifiers would be the correct analysis for the very similar

sentence big green ball. The second most common mistake uses the cate-

gory (S\S)\(S\S), which could be used to modify a VP or sentential modifier

(S\S). An example context for this mistake is the phrase: estimated re-

serves of 32 million barrels. Here, 32 should modify million which in turn

modifies barrels. Unfortunately, numbers come very often after verb attach-

ing prepositions in the corpus, and so the model has discovered that it can use

what should be a rare double verb modifier to compose into the preposition.

The most interesting and difficult type of error is that of recovering non-

local dependencies (Section 7.2.3). The recovery of non-local dependencies re-

quires the use of lexical categories with complex arguments and coindexation.

This makes their recovery beyond the scope of both standard dependency-

based approaches and our original induction algorithm. But the parser does

not learn to use lexical categories with complex arguments correctly even

when the algorithm is extended to induce them. For example, BC
1 prefers

to treat auxiliaries or equi verbs like promise as intransitives rather than as

an auxiliary that shares its subject with pay. The surface string supports

this decision, as it can be parsed without having to capture the non-local

dependencies (top row) present in the correct (bottom row) analysis:

I promise to pay you

N S\N (S\S)/S S/N N

N (S\N)/(S\N) (S\N)/(S\N) (S\N)/N N

As this is a particularly interesting problem that we are able uncover with

our approach and is problematic for progress on grammar induction, we

provide several examples from the development set of places where we predict

the wrong category.
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... earnings, which have marched steadily ...

Gold (N\N)/(S\N) (S\N)/(S\N) S\N
Predicted S/S S\N S\S

... million, which have helped launch ...

Gold (N\N)/(S\N) (S\N)/(S\N) (S\N)/N

Predicted (S\S)/(S/N) S/S (S/N)/N

... write-off could help solidify ...

Gold (S\N)/(S\N) (S\N)/(S\N) (S\N)/N

Predicted (S\N)/(S/N) (S/N)/(S/N) (S/N)/N

Learning strong lexical statistics for the main verbs might help, or it might

be the case that to address these might require actually modeling the non-

local dependencies.

We also see that this model uses seemingly non-English verb categories of

the form (S/N)/N, both for ditransitives, and object control verbs. Perhaps

it chooses this analysis for object control verbs because the spurious /N

argument can be swallowed by other categories that take arguments of the

form S/N, like its (incorrect) treatment of subject relative pronouns (row 4 of

Table 7.10), or because of the pervasive use of auxiliaries and modals which

separate the verb from its subject:

... bill that would give the secretary authority

Gold (S\N)/(S\N) ((S\N)/N)/N

Predicted (S\S)/(S/N) (S/N)/N

One possible lesson we can extract from this is that practical approaches for

building parsers for new languages might need to focus on injecting semantic

information that is outside the scope of our learner from text alone.

Dependency error analysis

Table 7.11 shows the labeled recall of the most common dependencies. We

see that both new models typically outperform the baseline, although they

yield different improvements on different dependency types. BC
1 is better at
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1st Argument 2nd Argument

B1 BC
1 BP&L

3 B1 BC
1 BP&L

3

N/N 68.4 69.7 71.6
S\N 12.2 24.9 14.6
S\S 17.0 16.2 18.7
S/S 24.0 27.1 33.8
(N\N)/N 49.7 54.4 51.2 41.0 46.2 42.4
(S\N)/N 26.6 32.9 34.4 30.6 33.2 33.8
(S\S)/N 21.6 19.2 24.7 24.0 24.9 29.3
(S\N)/S 23.9 50.3 32.5 25.2 59.1 35.0
(S\S)/S 6.1 22.7 14.1 9.5 34.6 19.5

Table 7.11: LF1 scores of B1, BC
1 and BP&L

3 on the most common dependency
types in Section 22.

recovering the subjects of intransitive verbs (S\N) and verbs that take sen-

tential complements ((S\N)/S) while B3 is better for simple adjuncts (N/N,

S/S, S\S) and transitive verbs.

7.2.3 Dealing with Non-Local Dependencies

While the methodology used here is restricted to CCG-based algorithms, we

believe the lessons to be very general. The aforementioned constructions

involve optional arguments, non-local dependencies, and multiple potential

heads. Even though CCG is theoretically expressive enough to handle these

constructions, they present the unsupervised learner with additional ambi-

guity that will pose difficulties independently of the underlying grammatical

representation.

For example, although our approach learns that subject NPs are taken as

arguments by verbs, the task of deciding which verb to attach the subject to

is frequently ambiguous. This most commonly occurs in verb chains, and is

compounded in the presence of subject-modifying relative clauses (in CCG-

bank, both constructions are in fact treated as several verbs sharing a single

subject). To illustrate this, we ran the BC
1 and BP&L

3 systems on the following

three sentences:

1. The woman won an award

2. The woman has won an award

3. The woman being promoted has won an award
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The single-verb sentence is correctly parsed by both models, but they flounder

as distractors are added. Both treat has as an intransitive verb, won is given a

category traditionally used for adverbs and an ends up with a low probability

preposition category:

The woman won an award

BP&L
3 /BC

1 : N/N N (S\N)/N N/N N

The woman has won an award

BP&L
3 /BC

1 : N/N N S\N S\S (S\S)/N N

It appears that despite the adverb analysis for won and the preposition for

an having low probabilities, they are still higher under these models than

analyses using complex arguments. Future work might try and investigate

enforcing additional consistency of analyses across sentences.

To accommodate the presence of two additional verbs, both models analyze

being as a noun modifier that takes promoted as an argument. BC
1 (correctly)

stipulates a non-local dependency involving promoted, but treats it (arguably

incorrectly) as a case of object extraction:

... being promoted has won an award

BP&L
3 (N\N)/S S S\N S\S (S\S)/N N

BC
1 (N\N)/(S/N) S/N S\N S\S (S\S)/N N

Given that there is enough signal for our model to try and capture non-

local dependencies, we would expect these grammatical constructions to pose

even greater learning difficulties for dependency formalisms which do not have

non-local dependencies in their search space.

Discovering these, and many of the other systematic errors describe here,

may be less obvious when analyzing unlabeled dependency trees. But we

would expect similar difficulties for any unsupervised approach when sentence

complexity grows without a specific bias for a given analysis.

7.2.4 Wh-words and the Long Tail

To dig slightly deeper into the set of missing constructions, we tried to iden-

tify the most common categories that are beyond the search space of the

current induction algorithm. To do this we needed to compute the set of

frequent categories in the treebank. We do so by using CCGbank to com-

pute the set of categories assigned to each part of speech tag. We then take
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the counts from the corpus to compute what percentage of the corpus uses

each (category, tag) assignment. We threshold the lexicon to only contain

the categories that comprise 95% of token occurrences for each tag. Finally,

to discover what categories lie outside the search space of our approach, we

removed both the categories that contain PP, as we assume our approach

does not have access to a labeled set of preposition, and those categories

that our algorithm can induce with complex arguments and three rounds of

induction. What remains are the categories shown in Table 7.12. These are

constructions that motivate the need to improve our induction algorithm.

The tags that are missing categories are predominantly wh-words required

for wh-questions, relative clauses or free relative clauses. Some of these cat-

egories violate the assumptions made by the induction algorithm: question

words return a sentence (S) but are not themselves verbs. This violates our

seed knowledge assumption that only allows verbs to have the category S.

Another example is that free relative pronouns return a noun, but take argu-

ments (violating constraint 1 in Section 4.2.2). However, this is a surprisingly

small set of special function words and, therefore, perhaps a strategic place for

supervision. Questions, in particular, pose an interesting learning question

– how does one learn that these constructions indicate missing information

which only becomes available later in the discourse?

Additional Category p(cat | tag) Explanation (example)

((N\N)/(S\N))/N .93 WP$ Possessive Wh-pronoun (whose)
N/(S/N) .14 WP Wh-pronoun (what)
N/(S\N) .08 WP Wh-pronoun (what)
((N\N)/S)\((N\N)/N) .07 WDT Wh-determiner (which)
((S\S)\(S\S))\N .04 RBR Adverb (earlier)
S/(S\N) .04 WP Wh-pronoun (whoever)
S/(S/N) .02 WP Wh-pronoun (whom)

Table 7.12: Common categories that the algorithm cannot induce.

7.2.5 Lessons Learned from Labeled Analysis

We introduced labeled evaluation metrics for unsupervised CCG parsers and

showed that these expose many common syntactic phenomena that are cur-

rently out of scope for any unsupervised grammar induction system. We

focused our analysis on English for simplicity, but many of the same types of
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problems exist in other languages, and can be easily identified as stemming

from the same lack of supervision. For example, in Japanese we would expect

problems with post-positions, in German with verb clusters, in Chinese with

measure words, or in Arabic with morphology and variable word order.

We believe that one way to overcome the issues we have identified is to

incorporate a semantic signal. Lexical semantics, if sparsity can be avoided,

might suffice; otherwise learning with grounding [144] or an extrinsic task

could be used to bias the choice of predicates, their arity and in turn the

function words that connect them. Alternatively, a simpler solution might

be to follow the lead of Boonkwan and Steedman [38] or Garrette et al.

[103] where gold categories are assigned by a linguist or treebank to tags

and words. It is possible that more limited syntactic supervision might be

sufficient if focused on the semantically ambiguous cases we have isolated.

More generally, we hope to initiate a conversation about grammar induc-

tion which includes a discussion of how these non-trivial constructions can

be discovered, learned, and modeled. Relatedly, in future extensions to semi-

supervised or projection-based approaches, these types of constructions are

probably the most useful to get right despite comprising the tail, as analyses

without them may not be semantically appropriate. Further, because the se-

mantics of a sentence is so heavily dependent on many of these constructions

grounding or active learning may be ideal mechanisms for learning these cat-

egories. In summary, we hope to begin to pull back the veil on the types of

information that a truly unsupervised system, if one should ever exist, would

need to learn, and we pose a challenge to the community to find ways that a

learner might discover this knowledge without hand-engineering it.
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Chapter 8

Grammar Induction with
Automatically Induced Clusters

As mentioned, one goal of our work is to lessen the reliance of the grammar

induction literature on gold POS-tagged text. We show here, for the first

time, that very limited human supervision may be enough to induce labeled

dependencies from automatically induced word clusters. Thus far we have

assumed access to POS tags and defined our seed knowledge by attaching

S to verbs and N to nouns. However, assuming gold POS tags is highly

unrealistic for most scenarios in which one would wish to use an otherwise

unsupervised parser.

In joint work with Christos Christodoulopoulos [145], we demonstrate how

our universal seed knowledge can be easily applied to induced clusters given

a small number of words labeled as noun, verb or other, and that this small

amount of knowledge is sufficient to produce labeled syntactic structures

from raw text. Specifically, we provide a labeled evaluation of induced CCG

parsers against the English [70] and Chinese [93] CCGbanks. To provide a

direct comparison to the dependency induction literature, we also provide

an unlabeled evaluation on the 10 dependency corpora that were used for

the task of grammar induction from raw text in the PASCAL Challenge on

Grammar Induction [63].

The system of Christodoulopoulos et al. [146] was the only participant

competing in the PASCAL Challenge that operated over raw text (instead

of gold POS tags). However, their approach did not outperform the six

baseline systems provided. These baselines were two versions of the DMV

model [41, 137] run on varying numbers of induced Brown clusters (described

in section 8.1). We will, therefore, use these baselines in our evaluation.

Work in this chapter was first published in Y. Bisk, C. Christodoulopoulos, and J.
Hockenmaier, “Labeled grammar induction with minimal supervision,” in Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), Beijing,China, July 2015. [145] and is reprinted here with permission by
the copyright holder.
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Outside of the shared task, Spitkovsky et al. [147] demonstrated impres-

sive performance using Brown clusters but did not provide evaluation for

languages other than English.

The system we propose here will use a coarse-grained labeling comprised of

three classes, which makes it substantially simpler than traditional tagsets,

and uses far fewer labeled tokens than is customary for weakly-supervised

approaches [107, 103].

The parsing model is our new punctuation and lexicalization aware HDP-

CCG (BP&L
3 defined in Section 6.4 and evaluated in Section 7.2).

8.1 Inducing Word Clusters

We will evaluate three clustering approaches, briefly summarized here:

Brown Clusters: Brown clusters [148] assign each word to a single clus-

ter using an agglomerative clustering that maximizes the probability of the

corpus under a bi-gram class conditional model:

P (wi|wi−1) = P (wi|ci)× P (ci|ci−1)

Brown clustering is a greedy algorithm that defines n classes and then moves

through the corpus assigning words to whichever cluster maximizes the prob-

ability of the corpus. We use the implementation at https://github.com/

percyliang/brown-cluster for our experiments. Because the clustering is

agglomerative, a cluster hierarchy is formed where classes further down the

tree correspond to smaller word groupings with finer grained distinctions.

In what is perhaps unfair to this technique, we simply ran Brown clustering

with the desired number of clusters. We did not attempt to form a fine-

grained clustering which we could then prune the desired size. We avoided

this potential optimization simply to avoid adding another parameter to the

approach that required tuning.

BMMM: The Bayesian Multinomial Mixture Model (BMMM, [149]) is

also a hard clustering system, but has the ability to incorporate multiple

types of features either at a token level (e.g. ±1 context word) or at a type

level (e.g. morphology features derived from the Morfessor system [150]).

The combination of these features allows BMMM to better capture mor-

phosyntactic information.
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The BMMM clusters word types by clustering their features. Every latent

syntactic class has some prior probability and some distribution over the

features it extracted from the data. Inference then searches for model prob-

abilities that maximize the observed features under a set of latent classes.

We use the implementation at https://github.com/christos-c/bmmm.

Bi-gram HMM: We also evaluate unsupervised bi-gram HMMs, since

the soft clustering they provide may be advantageous over the hard Brown

and BMMM clusters. A bi-gram HMM has the same probability model

for a word as the Brown clusters except that instead of maximizing this

conditional distribution by greedy assignment of word types to cluster we

aim to maximize the probability of the complete sequences (sentences) in

our data. This is accomplished via the Forward-Backward algorithm [151]

which computes posterior marginals for sequence data via message passing

forward and backward through the lattice of possible clusters for any given

token in the corpus. These marginals can then be used to re-estimate the

data and are optimized via the Expectation-Maximization algorithm.

The important conceptual point is that distributions over the lexical emis-

sions and class transitions keep their full support throughout inference. This,

combined with optimizing complete sequence likelihood, means that during

Viterbi decoding at test time each individual token is assigned a cluster,

rather than each lexical type, and that the choice is informed by both the

preceding and following words. This often leads to choosing a cluster assign-

ment which assigns a low probability to any specific token in the sequence

but a higher overall score to the full sentence. Despite this flexibility in the

model, unsupervised HMMs may not find good POS tags [152], and in future

work, more sophisticated models (e.g. [153]), might outperform the systems

we use here.

In all cases, we assume that we can identify punctuation marks, which

are moved to their own cluster and ignored for the purposes of tagging and

parsing evaluation.

8.1.1 Identifying Noun and Verb Clusters

To induce CCGs from induced clusters, we need to attach our seed knowledge

(Section 4.1) to each cluster. This requires attaching a single label (noun,

verb, or other) to each cluster. We did not investigate using a softer labeling
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that allows for assigning a cluster to two or all three of our seed classes.

Because this knowledge forms the basis of our grammar, the labeling must

be done judiciously. For example, the model performs very poorly when

every class is given the label verb. If allowed to, the system will choose to

analyze prepositions as the main sentential predicates instead of verbs.

We demonstrate here that labeling three frequent words per cluster is

sufficient to outperform state-of-the-art performance on grammar induction

from raw text in many languages.1 We emulate having a native speaker

annotate words for us by using the universal tagset [2] as our source of labels

for the most frequent three words per cluster (we map the tags Noun, Num,

Pron to noun, Verb to verb, and all others to other). The final labeling

is a majority vote, where each word type contributes a vote for each label it

can take. One possible extension of this approach would be to use a plurality

vote with where each vote was weighted by the type’s frequency rather than

the equal weighting we used here.

This approach can be easily scaled to allow more words per cluster to vote.

But we will see that three per cluster is sufficient to label most tokens cor-

rectly. Future work may be better spent improving the underlying clustering

instead of adding additional human annotation.

8.2 Experimental Setup

We focus first on producing CCG labeled predicate-argument dependencies

for English and Chinese, and will then apply our best settings to produce a

comparison with the tree structures of the languages of the PASCAL Shared

Task. All languages will be trained on sentences of up to 20 words (not

counting punctuation). All cluster induction algorithms are treated as black

boxes and run over the complete data sets in advance. This alleviates having

to handle tagging of unknown words.

To provide an intuition for the performance of the induced word clusters,

we provide two standard metrics for unsupervised tagging:

Many-to-one (M-1): A commonly used measure that relies on mapping

each cluster to the most common POS tag of its words. Among the tokens

tagged with a given cluster, whichever gold tag is most common overall is

1Though their labels were much more informative, the basic idea is similar to that of
Haghighi and Klein (2006) [154]
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assigned to the cluster as its label. More than one cluster may be mapped to

a give POS tag. M-1 reports the percentage of correctly labeled tokens if the

tags were then propagated back to the clusters that chose them. However,

M-1 can be easily inflated by simply inducing more clusters. In the extreme,

one could split the clusters until each cluster only corresponded to a single

POS tag.

V-Measure: Proposed by [155], V-Measure (VM) measures the infor-

mation-theoretic distance between two clusterings and has been shown to

be robust to the number of induced clusters. Both of these metrics are

known [156] to be highly dependent on the gold annotation standards they

are compared against, and may not correlate with downstream performance

at parsing [157].

Of more immediate relevance to our task is the ability to accurately identify

nouns and verbs.

Noun, Verb, and Other Recall: We measure the (token-based) re-

call of our three-way labeling scheme of clusters as noun/verb/other against

the universal POS tags of each token. As noted above, we assume noun

corresponds to the tags Num, Pron, and Noun. We assume only Verb

corresponds to verb, and that all other tags map to other.

8.3 Experiment 1: CCG-based Evaluation

8.3.1 Experimental Setup

For our primary experiments, we train and test our systems on the English

and Chinese CCGbanks, and, as with our previous work, report labeled F1

(LF1) and undirected unlabeled F1 (UF1) over CCG dependencies. For the

labeled evaluation, we use our simplification of CCGbank. For Chinese we

also map both M and QP to N.

We use the published train/development/test splits, using the development

set for choosing a cluster induction algorithm, and then will present final

performance on the test data. We induce 36 tags for English and 37 for

Chinese to match the number of non-symbol and punctuation tags present

in the treebanks.
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Tagging Labeling Parsing
M-1 VM N / V / O LF1 Gold

E
n

gl
is

h Brown 62.4 56.3 85.6 59.4 81.2 23.3
BMMM 66.8 58.7 81.0 81.2 82.7 26.6 38.8
HMM 51.1 41.7 76.3 63.3 82.6 25.8

C
h

in
es

e Brown 66.0 50.1 88.9 28.6 91.3 10.2
BMMM 64.8 50.0 94.4 48.7 87.0 10.5 16.6
HMM 46.3 30.8 68.0 44.6 76.7 3.13

Table 8.1: Tagging evaluation (M-1, VM, N/V/O Recall) and labeled CCG-
Dependency performance (LF1) as compared to the use of Gold POS tags
(Gold) for the three clustering algorithms.

8.3.2 Results

Table 8.1 presents the parsing and tagging development results on the two

CCG corpora. In terms of tagging performance, we can see that the two

hard clustering systems significantly outperform the HMM, but the relative

performance of Brown and BMMM is mixed.

More importantly, we see that, at least for English, despite clear differences

in tagging performance, the parsing results of all models (LF1) are much more

similar. In Chinese we see that the performance of the two hard clustering

systems is almost identical, again, not representative of the differences in

the tagging scores. The N/V/O recall scores in both languages are equally

poor predictors of parsing performance. However, these scores show that

having only three labeled tokens per class is sufficient to capture most of the

necessary distinctions for the HDP-CCG. All of this confirms the observations

of Headden et al. [157] that POS tagging metrics are not correlated with

parsing performance. However, since BMMM seems to have a slight overall

advantage, we will be using it as our clustering system for the remaining

experiments.

Since the goal of this work is to produce labeled syntactic structures, we

also want to evaluate our performance against that of the HDP-CCG system

that uses gold-standard POS tags. As we can see in the last two columns of

our development results in Table 8.1 and in the final test results of Table 8.2,

our system is within 2/3 of the labeled performance of the gold-POS-based

HDP-CCG.

Figure 8.1 shows an example labeled syntactic structure induced by the
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LF1/UF1 Gold

English 26.0 / 51.1 37.1 / 64.9
Chinese 10.3 / 33.5 15.6 / 39.8

Table 8.2: Comparison on the test sets of our CCG parsing performance to
using gold tags.
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Figure 8.1: A sample derivation from the WSJ Section 22 demonstrating
the system is learning most of the correct categories of CCGbank but has
incorrectly analyzed the determiner as a preposition.
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model. We can see the system successfully learns to attach the final prepo-

sitional phrase, but mistakes the verb for intransitive. The labeled and un-

labeled undirected recall for this parse are 5/8 and 7/8 respectively.

8.4 Experiment 2: PASCAL Shared Task

8.4.1 Experimental Setup

During the PASCAL shared task, participants were encouraged to train over

the complete union of the data splits. We do the same here, use the develop-

ment set for choosing a HDP-CCG hyperparameter, and then present final

results for comparison on the test section. We vary the hyperparameter for

this evaluation because the data sets fluctuate dramatically in size from 9K

to 700K tokens on sentences up to length 20. Rather than match all of the

tagsets we simply induce 49 (50 if you include punctuation) classes for every

language. The actual tagsets vary from 20 to 304 tags (median 39, mean 78)

so we chose 49 as a round midpoint.

8.4.2 Results

We now present results for the 10 corpora of the PASCAL shared task (evalu-

ated on all sentence lengths). Table 8.3 presents the test performance for each

language with the best hyperparameter chosen from the set {100, 1000, 2500}.
As before, we convert all of our parses (Section 3.2.4) to match the CoNLL

style dependencies. This includes transformation like having the modifiers

depend on heads, unlike in CCG. Also, as with our previous results for the

PASCAL data (Section 7.1.1), the evaluation reported is for unlabeled at-

tachments.

The languages are sorted by the number of non-punctuation tokens in

sentences of up to length 20. Despite our average performance (37.8) be-

ing higher than the shared task (31.8), the variance in gains and losses are

substantial (σ = 15.2). It appears evident from the results that while data

sparsity may play a role in affecting performance, the more linguistically

interesting thread appears to be morphology. Czech is perhaps a prime ex-

ample as it has twice the data of the next largest language (700K tokens vs

336K in English), but our approach still performs poorly. It is possible that
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VM N / V / O This ST @15 BH

Czech2500 42 86 / 67 / 67 28.3 33.2 32.4 50.7
English2500 59 87 / 76 / 85 43.8 24.4 51.6 62.9
CHILDES2500 68 84 / 97 / 89 47.2 42.2 47.5 73.3
Portuguese2500 55 88 / 81 / 69 55.5 31.7 55.8 70.5
Dutch1000 50 81 / 81 / 82 39.9 33.7 43.8 54.4
Basque1000 52 2 / 78 / 95 31.1 28.7 35.2 45.0
Swedish1000 50 89 / 74 / 85 45.8 28.2 52.9 66.9
Slovene1000 50 83 / 75 / 79 18.5 19.2 23.6 46.4
Danish100 59 95 / 79 / 82 33.9 31.9 37.7 58.5
Arabic100 51 85 / 76 / 90 34.5 44.4 43.7 65.1

Average 54 78 / 78 / 82 37.8 31.8 42.4 59.4

Table 8.3: Tagging VM and N/V/O Recall alongside Directed Attachment
for our approach and the best shared task baseline. Subscripts below the lan-
guage show the hyperparamter constant (section 6.3.2) used during training.
Additionally, we provide results for length 15 to compare to our previously
published results (Section 7.1.1).

this might be addressed, at least in part, by training the parser on words

split by a morphological analyzer.

Additionally, it is clear that in some languages only very basic proper-

ties are being learned, as must be the case in Basque where noun recall was

abysmal (2%). This is masked by the unlabeled dependency metric, because

the model learns to treat nouns as adverbs. This creates a dependency arc

from the verb to the noun, which is indistinguishable (according to the un-

labeled CoNLL-style metric) from the arc that would be drawn between a

predicate and its argument. This is precisely the type of information loss

discussed in Section 3.4.1, though perhaps the fact that the grammar learns

this behavior can be used as the basis for future work in tag re-estimation.

Finally, while we see that the hard clustering systems outperform the HMM

for our experiments, this is perhaps best explained by analyzing the average

number of gold fine-grained tags per lexical type in each of the corpora. We

find, that the “difficult” languages have lower average number of tags per lex-

ical type, surface form, (1.01 for Czech, 1.03 for Arabic) than English (1.17)

which is the most ambiguous. This is likely due to morphology distinguish-

ing otherwise ambiguous lemmas. Where words like drink are ambiguous in

English, between noun and verb, in languages which conjugate the verb form

with prefixes/suffixes it is far less likely to see the same surface string for a
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verb as the bare noun.

8.5 Conclusions and Directions for Future

Work

Based on our final PASCAL results, there are several languages where our

performance greatly exceeds the previously published results, but many where

we fall short. It also appears to be the case that this problem correlates with

morphology (e.g. Ar, Sl, Eu, Cs) and some of the lowest performing intrinsic

evaluations of the clustering and labeling (Cs and Eu).

In principle, the BMMM is taking morphological information into account,

as it is provided with the automatically produced suffixes of Morfessor. Un-

fortunately, BMMM’s treatment of them simply as features from a “black-

box” appears to be too naive for our purposes. Properly modeling the rela-

tionship between prefixes, stems and suffixes both within the tag induction

and parsing framework is likely necessary for a high performing system.

We have produced the first labeled syntactic structures from raw text.

As there remains a noticeable performance gap due to the use of induced

clusters, this lends credence to our claim that moving forward we may need

to remove some of the pipeline enforced abstraction barriers between tagging

and parsing to allow for the two tasks to benefit each other [146].
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Chapter 9

Semantics With Induced
Grammars

In Section 3.1.5 we discussed the clean, and transparent, relationship be-

tween CCG and semantics. A CCG syntactic derivation provides the struc-

ture for a semantic derivation. This relationship is commonly exploited in

tasks like Semantic Parsing for Question Answering [82]. In this context, a

natural language question is parsed into a database query, which when ex-

ecuted returns an answer to the original question. Most systems that use

CCG for semantic tasks assume they have access to the mapping between

semantic predicates and words [78, 79, 80, 81, 82, 83] (Section 3.1.5). In this

formulation, the combinatory rules of CCG can then be used to build a se-

mantic interpretation in tandem with the syntactic derivation the syntactic

and semantic derivation are built together.

A novel insight exploited by Reddy et al. (2014) [72] is that the expense

of creating a mapping between database predicates and text can be avoided

by splitting up the semantic parsing process into two stages. First, syntactic

CCG derivations can be used to create an ungrounded semantic represen-

tation (Section 9.2). Second, existing resources can be used to learn the

grounding without explicit supervision (Section 9.3). The reason this ap-

proach works is because the correct CCG derivation correctly captures and

represents the semantics of the sentence, allowing for the application-specific

meanings to be learned separately and later.

Section 7.2.2 analyzed missing syntactic categories and their effects on pro-

ducing syntactic derivations that can support the correct semantics (Section

7.2.3). In this chapter, we will perform a direct semantic evaluation of our

approach. By using our parser, and a semi-supervised extension, to produce

semantic analyses, we will be able to measure the strength of our approach

in a downstream task, demonstrate the novel result that an unsupervised

Work in this chapter was performed jointly with Siva Reddy, John Blitzer, and Mark
Steedman.
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Figure 9.1: An example snippet from a knowledge graph centered on Bill
Gates. Here Bill Gates is linked to other entities and types.

parser can create meaningful semantic representations, and test our claims

about the utility of limited supervision. This is joint work with Siva Reddy,

John Blitzer and Mark Steedman.

9.1 Database Semantics

Relational databases [158] represent structured data in tables whose rows

and columns correspond to different aspects of this structure. The values

of several such tables can be intersected or reasoned about using first-order

logic. This innovation allowed for the introduction of query languages like the

Structured Query Language (SQL) for asking questions of and manipulating

data. As many databases exist in this form, parsing a natural language query

into this format proves very useful for many applications.

Recently, very large data-stores of facts like Freebase [159, 160] or Wiki-

Data1 have been constructed as tuple-stores with graph architectures (Figure

1https://www.wikidata.org/
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9.1). The architecture assumes that the nodes of the graph corresponds to

entities or events, which are linked to one another via some relation. The data

can, therefore, be represented by tuples of the form (entity1, relation, entity2).

In this way, facts, entities and relations are easily added to the graph with-

out needing to define new tables or schemas. The strength of this approach

becomes apparent when extracting facts from the web. Far more is known

or written about celebrities and politicians from the United States, than

other countries. The tuple store allows for every new fact (or revelation) to

be quickly and easy added. Additionally, these resources are just as easily

queried.

These facts and knowledge graphs will be the basis for the semantics in

our approach.

9.2 Ungrounded Database Semantics

As discussed previously, every syntactic rule in CCG has a corresponding se-

mantic counterpart that can be used to build a semantic interpretation for the

sentence, given a CCG lexicon with semantic interpretations (section 3.1.5).

These semantic predicates do not have to correspond to those in a particular

database or knowledge graph, but can be arbitrary tokens: predicate1, ... .

Such dummy predicates can then be used to produce (ungrounded) semantic

representations. We can see this in the following derivation:

Google acquired Nest

N : Google (S\N)/N : λy.λx.acquired(x, y) N : Nest
>

S\N : λx.acquired(x, Nest)
<

S : acquired(Google, Nest)

The “semantic” result of this derivation is: acquired(Google, Nest). If

repeated across a corpus, a series of “facts” can be extracted from the data:

acquired(Google, Nest) acquired(Microsoft, Skype)

founded(Bill Gates, Microsoft) married(Bill Gates, Melinda Gates)

...

This semantic representation is ungrounded because we do not know if the

predicates correspond to any relations in a database. What remains is to
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String Freebase ID

Google /m/045c7b
Nest /m/0hr65bq
Microsoft /m/04sv4
Skype /m/026wfg
Bill Gates /m/017nt
Melinda Gates m/0dmp4

Table 9.1: The corresponding Freebase node IDs for several people and com-
panies in our data.

Predicate Freebase Relation

acquired /organization/organization/companies acquired
founded /organization/organization founder/organizations founded
married /people/person/spouse s

Table 9.2: The corresponding Freebase relation names for our example data.

attach both the entities in our examples to nodes in the knowledge graph

and to find the correspondence, if any exist, between our dummy predicates

(constructed from the surface string) and the edges that exist in Freebase.

9.3 Grounding Semantics

There are two steps to grounding our representation: 1. Grounding the

names of entities to database IDs (Table 9.1) and 2. Finding the correct

Freebase relation for every predicate (Table 9.2).

Both of these require ambiguities to be resolved. Microsoft, for, exam-

ple might refer to Microsoft Corporation or Microsoft Research, both of

which have different IDs. Similarly, Bill Gates’s relation to Microsoft is as

founder, board member, and employee. In this work, our focus is on evaluat-

ing the parses and their predicted semantics so we will only be concerned with

grounding predicates and assume that entities have already been grounded.

We achieve this by using an annotated version of ClueWeb (a large crawl of

the internet). The annotated version: [161], which includes freebase entity

IDs.
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Reddy, Lapata, and Steedman (2014) To learn the mapping between

predicates and Freebase relations, we use a system introduced by Reddy,

Lapata and Steedman (2014) [72]. The basic intuition behind their approach

is that a sentence can be parsed to an ungrounded semantic representation

from which features are extracted to learn its correspondence to Freebase.

Learning this mapping requires that they generate a large set of training

examples of the form (ungrounded graph, known freebase equivalent). While

they cannot automatically generate data of this form, they can use declarative

sentences to produce synthetic queries. We will demonstrate this process for

the following two sentences:

Bill Gates founded Microsoft

Tony Fadell founded Nest Labs

Both sentences are first parsed into simple ungrounded representations:

founded(Bill Gates, Microsoft)

founded(Tony Fadell, Nest Labs)

The ungrounded representation does not tell us about the underlying Free-

base relation but it does indicate that the same predicate (founded) links two

pairs of entities. Because the nodes those entities correspond to are known,

we can choose to hide one, and ask the system to predict it. Doing so will

produce two “queries” with known answers:

Query Answer

founded(x, Microsoft) Bill Gates

founded(Tony Fadell, x) Nest Labs

The system can now extract a number of features (Section 3 of Reddy

et al. [72]) from the query to use in a perceptron for predicting the miss-

ing entity. These features include type information about the entities and

graph connectivity. Unlike Reddy et al., we do not use lexical similarity

features. By treating the vocabulary of predicates and freebase relations

as disjoint, we can test an approach which should generalize to new lan-

guages beyond English. This means that despite the string similarity be-

tween the English word “founded” and the Freebase relation name /organi-

zation/organization founder/organizations founded there is no information

about the surface string provided to the model. Reddy et al. report that
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Figure 9.2: By removing an entity (Nest Labs) from a declarative statement,
the analyzed statement can be transformed into a query. The graph and
logical expression above are the resultant queries that will be generated by
a successful syntactic parse.

these similarity features we are ignoring account for between 1.5 and 3 points

of accuracy for semantic parsing.

The importance of synthetic data is that it provides gold training data for

the system. If the system predicts the wrong freebase relation as the meaning

of founded , the system will not be able to predict the two missing entities

correctly. This failure can be used as feedback to update the classifier. In

this way, two simple declarative sentences have been transformed into labeled

data for predicting grounded semantic predicates.

In our discussion, we have focused on very simple sentences with a single

predicate and two entities, but this approach generalizes seamlessly to an

arbitrary number of entities or predicates. In the case of more complicated

sentences, several entities can be used to help make the prediction. In the

following sentence, there are three entities, and both Google and Palo Alto

have relations connecting them to Nest Labs:

Google acquired Nest Labs, which was founded in Palo Alto

In this sentence, to predict Nest Labs, there are two pieces of evidence and

two predicates in use. First is the acquisition by Google and second is the

location where it was founded. We can see precisely this information encoded

in the graph and logical form in Figure 9.2.

Often, more than one word is required to link entities. For example, the

predicate argument dependencies for Nest Labs ... founded in Palo Alto link
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Nest Labs as the subject of founded and Palo Alto as the argument of in.

In these cases, the preposition is modifying the verb, and this attachment is

translated into a single predicate, founded .in, whose first argument was the

arg1 of founded and whose second argument is the arg2 of in. One practical

concern of such a simple approach to the creation of ungrounded semantic

predicates is that we do not share information betwen predicates with the

same verb. For example acquire, acquired , acquired .by , etc. are all unique

and distinct tokens that need to be learned individually.

Finally, one technical note is that Reddy et al. assume neo-Davidsonian

semantics [162]. This simply means that we assume there exists an event e

that corresponds to each of the relations in freebase. We see this in Figure

9.2, where e1 is the shared event linking arg1 and arg2 of acquired , and e2

links the two arguments of founded .in. This translates into the inclusion of

an extra variable in the logical expressions to link the arg1 and arg2 of a

given predicate. We note this here simply for completeness.

9.3.1 Copulas and Special Semantic Rules

Our discussion has focused on the production and mapping of ungrounded se-

mantic predicates to database relations. Though outside the scope of the un-

supervised work presented here, there are many cases where a word or phrase

correspond to a mathematical operation, not a relation. These mathemati-

cal operations (e.g. sum, max, etc.) operate over the set of entries returned

by the rest of the query. Within supervised semantic parsing, knowledge of

these operations is very useful for performing reasoning on top of a query.

For example, to answer the question:

How many countries are members of the UN?

There is unlikely to be a numerical entry in the knowledge graph that an-

swers this question. The list of member countries will, however, be linked

or included in the graph. Executing a query that retrieves the list and com-

putes its size allows semantic parsers to answer these type of question. We

will not be handling this style of question, but feel it is a fruitful direction

for future work to investigate how special predicates of this form might be

learned automatically.

The one additional rule we will be encoding is for copulas. Following the
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example of Reddy et al. we will produce two ungrounded graphs for sentences

that contain a copula. It is best to explain why using an example.

Obama is the US President and lives in DC.

A copula creates an equality relation between its arguments. “Obama is

the US president” implies that any statement that is true of Obama is also

true of the US president, and vice-versa. We, therefore, add a rule that any

predicate that acts on an argument of a copula should be duplicated also to

hold for the copula’s other argument:

Without copula rule: Added with copula:

is(Obama, US President)

lives.in(Obama, DC) lives.in(US President, DC)

This additional semantic knowledge is not propagated to the parser. If the

syntactic parser does not link Obama and President, then the copula rule

will not fire. In this way, the semantics is enhanced to match the domain,

but the parser is not given access to this supervision.

9.4 Evaluating Grounded Semantics

We have outlined how dummy predicates can be attached to a syntactic

CCG parse to create an ungrounded semantic representation. Further, as

noted previously, given access to (an annotated version of) ClueWeb and the

Freebase, we have a procedure for learning correspondences from ungrounded

predicates to grounded relations. What remains is to evaluate if the joint

system is learning to map the text to the correct database relations.

Reddy et al. evaluate their system using Question Answering. They use a

supervised parser to analyze questions, use the groundings they have learned

to map the question to a query, and evaluate if the query returns the correct

answer. Unfortunately, parsing questions is outside the scope of our parser,

but a more direct semantic evaluation is possible over sentences instead.

Evaluation: Given a sentence, one entity can be removed at random, and

our system will be tasked with correctly predicting it.
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Sentence:

Google acquired Nest Labs, which was founded in Palo Alto.

Query:

Google acquired , which was founded in Palo Alto.

Answer:

Nest Labs

Performing well at this task requires that the syntactic derivation has suc-

cessfully linked the relevant entities to their predicates both during training

(to learn the semantic mapping) and at test time. As before, we can compute

precision, recall and F1 scores. We follow the lead of Reddy et al. and use

a loose metric for correctness: the correct answer is in the set of predicted

entities.

Precision can be computed by dividing the number of sentences for which

we predicted the correct entity by the total number of sentences for which

we made a prediction. Recall is the number of correct predictions divided by

the full test set, and the harmonic mean is the same formula as before: 2pr
p+r

.

To analyze the effect of sentence complexity on our performance, we report

overall scores as well as performance for subsets of the data set broken down

by the number of entities per sentence (2, 3, or 4). In addition, we previously

discussed how small amounts of knowledge about the lexicon may prove very

beneficial when creating a parser (Section 7.2.2). To evaluate this claim

and situate our results, we will compare our model to semi-supervised and

supervised parsers. Finally, we include a Bag-of-Words (BoW) baseline that

does not model any syntax, to evaluate whether the syntax we discover is

capturing semantically useful information.

For the supervised comparison, we will use the state-of-the-art Clark and

Curran [85] (C&C) parser. This is the same parser used in the experiments

by Reddy et al. (2014). As discussed before, the correct CCG syntactic parse

of a sentence specifies exactly which words are predicates and how every ar-

gument slot is filled. In this way, and correspondingly in the simple resultant

ungrounded semantic parse, the syntactic ambiguities of the sentence are

eliminated, and a simple, unambiguous representation is provided as input

to learn the semantic mapping of the sentence to the database.
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9.4.1 Supervised and Bag-of-Words Comparisons

To provide a counterpoint, the BoW model (inspired by Yao (2015) [163])

entertains the possibility that every word might act to link every pair of

entities in the sentence. To make the strengths of a syntax approach more

explicit, we revisit our example sentence from earlier.

Google acquired Nest Labs, which was founded in Palo Alto.

Supervised Parser: acquired(Google, x) ∧ founded.in(x, Palo Alto)

Bag-of-Words: {Google, Palo Alto} + {acquired, founded, in, was, which}

Supervised Parser The syntactic parse provided by a supervised parser

will identify that there are two predicates, each attached to distinct entities

(Google and Palo Alto) which are looking for either an initial or second

argument. This is a very precise relation, and intersection of entities.

Bag-of-Words In contrast, the BoW model only has access to two pieces

of knowledge: 1. There is a set of entities in the sentence: {Google, Palo

Alto}, and 2. One or two of the other words in the sentence should predict

the missing entity. We show these two sets above.

The BoW model is therefore presented with the union of entities linked to

either entity in the graph, and must find the most discriminating word(s) in

the remainder of the sentence to use when predicting the answer (e.g. Nest

Labs).

As compared to the supervised parser, the BoW model has a tremendous

amount of freedom in choosing relations to predict the missing entity. In

this case, it might only learn the acquisition relation, but still get the answer

correct. In contrast, the supervised parser would require correct knowledge

of both acquired and founded .in to make the correct prediction.

This lack of information about the structure of the sentence is also a weak-

ness. If the task were to predict Palo Alto, the BoW model should have

more difficulty choosing the right city as it is equally like to predict a location

based on knowledge of Google (Menlo Park) as based on Nest Labs (Palo

Alto).
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9.5 Semi-Supervised Grammars

We have outlined the strongest (supervised parser) and weakest (BoW model)

approaches to the task of learning semantic groundings. We are also inter-

ested in evaluating how the unsupervised model we have been developing

throughout the thesis will compare to these approaches. We hope its parses

will constrain the semantic groundings better than a BoW model, but with

equally little supervision.

The final approach we compare is a semi-supervised version of our model.

We claimed earlier in our analysis of the unsupervised parser’s failings (Sec-

tion 7.2.2) that a small set of categories might be sufficient to drastically

improve the model’s parsing performance. Further, we also noted that our

unsupervised models did not even have access to the PP category.

9.5.1 The Impact of Supervision

To test how knowledge of the lexicon of the category PP affects our model

we created six lexicons from the training section of the English CCGbank.

Supervised parsers have three main advantages over a system like ours.

First, they have access to a grammar and lexicon that are both (much more)

complete2 and correct3 than what the induction algorithm returns. Sec-

ond, they are provided with correct parses (including lexical categories and

attachments) during training. Third, their models have access to richer fea-

tures and more data than our models are currently trained on. To assess the

importance of these differences, we compare our unsupervised parser with

a weakly supervised variant, which uses the same probability model, but

is trained on gold lexicons derived from CCGbank, and with the fully su-

pervised parser (HWDep) of Hockenmaier and Steedman (2002) [98]. We

chose to compare against the HWDep model because it is a simple genera-

tive model which models lexical dependencies where our approach does not.

In this way, HWDep is better suited to take advantage of the full annotated

syntactic parse than our model.

2Lexical coverage is a problem even for supervised CCGbank parsers.
3CCGbank also contains some rare categories and rules that are probably incorrect.
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Weakly supervised parsing with partial gold lexicons
Without PP With PP

90% 95% 99% 90% 95% 99%

# Categories 32 36 65 36 44 94
Ave # Cats / Tag 3.2 4.3 7.4 3.6 5.0 9.4
Token Coverage 89.4 91.2 94.4 92.7 95.2 98.7
Type Coverage 20.9 23.6 41.9 23.6 29.1 58.1
Type Precision 96.9 97.2 95.4 97.2 97.7 95.4
Sentence Coverage 61.8 66.4 76.3 64.6 73.2 90.4

Parse Coverage 78.8 92.0 99.9 80.0 92.4 99.9
ST Accuracy 59.1 69.3 67.5 60.0 69.5 63.3
LF1 48.2 50.5 41.3 49.3 51.9 37.4
UF1 61.2 65.0 58.0 63.6 69.5 61.0

Table 9.3: Performance (Section 7.2) of the weakly supervised parser on Sec-
tion 22 of the English CCGbank. In addition we report the same ambiguity
metrics used for induced lexicons in Section 4.4.3. We computed partial lex-
icons based both on the total token distribution (right) and for words whose
gold tag did not include the PP category.

9.5.2 The Weakly Supervised Parser

We now evaluate our model when trained in a weakly supervised fashion.

Instead of using the automatically induced lexical categories to create the

parse forests that the model is trained on, we use (partial) gold lexicons

derived from CCGbank. This is similar in spirit to Boonkwan and Steedman’s

[38] semi-supervised approach to CCG induction, which requires a linguist

to help construct the lexicon. Since the categories considered by our parser

are defined by a word’s POS tag, we define our CCGbank gold lexicons

also in terms of tags rather than words. For each tag, we find the set of

categories that cover 90%, 95% and 99% of its occurrences in our training

sentences. Since the induction algorithm does not consider the category

PP, we also consider only tokens whose lexical categories do not contain

a PP result or argument. We again evaluate against simplified CCGbank

categories (with PPs), and parse with the same BC
3 settings as in the fully

unsupervised case with complex arguments (allowing restricted type-raising

which only includes the categories S/(S\N) and S\(S/N), and punctuation,

but no type-changing).

There are two important caveats to note about this experimental setup.
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First, the lexicons are constructed based on token coverage, not sentence

coverage. Therefore, in Table 9.3 we see that even when 99% of a tag’s gold

categories are included, only 90.4% or 76.3% (with and without PP) of gold

parses are recoverable. Second, the model is provided an unweighted lexicon.

We are not experimenting with providing additional information from the

corpus to the system (e.g. frequency counts for categories).

The numbers presented here parallel those computed for induced grammars

(Section 4.4.3), but because these are gold (tag based) lexicons, the average

number of categories per tag is much smaller (an order of magnitude) than the

ambiguous categories introduced by induction. Further, all metrics reported

are higher than in the case of the induced lexicon.

9.5.3 Performance of the Weakly Supervised Parser

Table 9.3 shows the performance of the weakly supervised parser (B3 with

punctuation, lexicalization and complex arguments, trained and tested on

the same data as in Table 7.5) with CCGbank lexicons.4 In contrast to the

induced lexicons which has no parse failures, only the lexicons with 99%

token coverage can parse the unseen data without (basically) any parse fail-

ures. The 90% lexicons yield too many parse failures (> 20%) to achieve

good results. But the model seems to fail to properly utilize the additional

categories provided by the 99% lexicon. We see this in the fact that the cor-

rect sequence of categories exist in 10-15% more of the sentences with 99%

coverage than 95% coverage, but the model’s performance drops.

The lexicon with 95% coverage and PPs (G95%) is the only one that out-

performs the unsupervised parser (BP&L
3 ) on all metrics. What stands out is

the very small increase in labeled dependency recovery (LF1) that the 95%

lexicons have over the 90% lexicons, even though they have far fewer parse

failures (7.6% vs. 20.0%), and much higher (labeled) supertagging accura-

cies (69.5 vs. 60.0). This is presumably due to the simplicity of our model

(which does not capture word-word dependencies) and to the fact that raw

sentences do not carry enough signal for an unsupervised system to learn

correct attachments.

The benefit of knowing the additional categories provided by a semi-

supervised lexicon becomes apparent in Table 9.4, which reproduces some

4All results reported with α = 5
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Model Supervision UF1 LF1

B1 POS tags 60.6 34.5

BP&L
3 + Punc & Words 63.6 37.1

G95% + Partial Lexicon 70.0 52.6
HWDep Fully supervised 88.5 80.3

Table 9.5: Overall performance on Section 23 of the systems discussed in this
Chapter.

of the detailed error analysis from Table 7.11 in Section 7.2.2 but also in-

cludes the semi-supervised and fully supervised models trained on the same

data. We see how categories like the possessive, relative pronouns and aux-

iliaries are nearly unambiguous constructions. The model still does not cap-

ture bilexical dependencies that might be necessary for improved attachment

decisions. Additionally, the most dramatic failing of the semi-supervised lex-

icon is the attachment of verb modifying prepositions ((S\S)/N) (6.7 LF1 vs.

24.7 LF1 for BP&L
3 ), presumably due to argument-adjunct ambiguity with

PP/N.

Finally, we can provide the first side-by-side labeled comparison of an

unsupervised, semi-supervised and supervised system on Section 23 in Table

9.5. Once again this table makes clear that, while many of the attachments

learned by unsupervised models are correct, we still have immense progress

to be made on labeled evaluation metrics.

9.6 Slot Filling Performance

We now evaluate our unsupervised and semi-supervised systems (trained on

length 20 sentences from the WSJ) against a Bag-of-Words (BoW) baseline

(one in which any word, or pair of words in the sentence can act as a relation

to link entities) and against the state-of-the-art supervised syntactic parser

of Clark and Curran [85] (C&C). For each of the four syntactic representa-

tions (BoW, unsupervised, semi-supervised, supervised), we train the system

described in Section 9.3 on nearly 85,000 declarative sentences and test on

just under 10,000 sentences in which one entity has been randomly removed.

The full dataset of 100,000 sentences was randomly sampled to create a train-

development-test split of 85-5-10. The development data was used to discard

perceptron gradient steps which hurt accuracy during training. The results
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Prec Recall F1

Clark & Curran 38.7 38.1 38.4
Semi-Supervised 37.5 35.0 36.2
Unsupervised 32.6 30.5 31.5

Bag-of-Words 33.1 33.1 33.1

Table 9.6: Slot filling performance (Section 9.4) of different syntactic models.
For 10,000 with a randomly dropped entity, we are computing what percent-
age of our predictions are correct (precision), what percentage of the data set
we correctly predict (recall), and the harmonic mean of these values (F1).

are presented in Table 9.6.

Recall that the syntactic parse constrains the possible semantic interpre-

tation of a sentence. Our goal when analyzing this table is to see whether

the constrained semantics licensed by the syntactic parsers are correct and

allow the system to learn. Not surprisingly, the fully supervised and semi-

supervised approaches outperform the baseline, but the unsupervised system

appears to fall short. In particular, we see that with very little annotation

the semi-supervised system nearly matches the performance of a fully super-

vised state-of-the-art parser (36.2 vs. 38.4), while the unsupervised system

performs worse than the Bag-of-Words baseline (31.5 vs. 33.1).

When reasoning about this apparently negative result for our unsuper-

vised approach, we realized that the strengths and weaknesses of the BoW

and unsupervised approach should be complementary. In sentences in which

there are only two entities, there is likely a single predictive verb, which, if

improperly analyzed by the syntax, will cause the system to fail. A common

example being our system’s inability to capture the non-local dependencies

of the auxiliary (Section 7.2.3):

Obama was born in Hawaii

We find upon analyzing the output of our system that we are predicting

was as the ungrounded semantic predicate: was.in(Obama, Hawaii). When

this mistake is aggregated across a large corpus, the semantics of founded.in,

born.in, etc. are all mapped to the increasingly ambiguous semantic pred-

icate was.in(). This one-to-many mapping makes it nearly impossible for

the semantic grounding to succeed. In contrast, the BoW model just picks

out born as the most discriminating word in the sentence, as it is the best
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Overall 2 3 4

BoW 33.1 38.8 25.1 12.8

C&C 38.4 5.3 44.4 5.6 28.7 3.6 26.0 13.2
Semi-Supervised 36.2 3.1 41.5 2.7 27.0 1.9 23.9 11.1
Unsupervised 31.5 -1.6 35.8 -3 24.9 -0.2 17.9 5.1

Table 9.7: Slot filling performance of different syntactic models as a function
of the number of entities in the sentence. We report F1 for each approach
and the absolute gains/losses of the syntax-based models as compared to the
BoW approach.

predictor of the missing entity. In doing so, it ignores the syntax of the sen-

tence entirely to extract the one descriptive word. For this reason, we would

expect the BoW model to shine on simple sentences.

At the other end of the extreme are sentences with three or four entities.

For example, in our example from before:

Google acquired Nest, which was founded in Palo Alto.

If we randomly select Palo Alto to be predicted, the clause attachment

becomes crucially important. Both Google and Nest were founded in cities,

but only one was founded in Palo Alto. For this reason, we would expect

the BoW model to perform at chance, drastically lowering its performance.

In contrast, while syntax-based techniques also suffer from decreased perfor-

mance due to ambiguity in longer sentences, we would expect their relative

performance to increase on three and four entity sentences.

To investigate this further, we split up the evaluation sentences by the

number of entities in the sentence (including the removed entity). We then

computed the prediction F1 for each subset of the test set and report the

results in Table 9.7 and relative performance in Figure 9.3.

Upon analyzing the results of these experiments, it becomes apparent that

the real strength of syntax is on more complex sentences. The most exciting

result being the final column where the performance of the unsupervised

system on sentences with four entities nicely outperforms the BoW model.

We should note that even the supervised system is far from perfect. This

is likely due to the nature of the data. The data is web text that we believe

to have linked entities, but there are no assurances that the sentences in our

corpus refer to the set of relations in Freebase. Addressing this concern and
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Figure 9.3: Relative absolute F1 performance of our three syntax-based ap-
proaches as compared to the Bag-of-Words model.

building better semantic parsers is outside the goal of our work. We have

demonstrated the utility of syntax, even when unsupervised, for semantic

grounding.

9.7 Conclusions

There are two primary contributions in these experimental results. The first

is that, unsurprisingly, a somewhat limited gold lexicon (44 categories) can

lead to the creation of a semi-supervised model that nearly matches super-

vised performance despite not having access to full treebank. It is possible

that the questionnaire used by the semi-supervised approach of Boonkwon

and Steedman [164] might be sufficient for building an effective semantic

parser in new languages.

The second and perhaps most significant and surprising contribution is

that an unsupervised approach discovers enough syntactic structure auto-

matically from the text to beat a Bag-of-Words model on long sentences.

From a practical standpoint, the complementary errors of the two systems

might be combined in future work to produce a very successful semantic

parser. Additionally, because the BoW model is better at isolating the pri-

mary semantic predicate on short sentences, future work might integrate

this signal into the unsupervised grammar induction process to improve the

syntactic parser.

A final point worth noting is that we have now created an information
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extraction system from very limited resources. Our approach assumes access

to an initial database of facts and a corpus of automatically tagged text. To

deploy this system in a new language would only require retraining one of our

unsupervised or semi-supervised parsers and translating the name of entities.

We are therefore slightly closer to being able to quickly deploy information

extraction systems in languages where there are no treebanks.
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Chapter 10

Conclusions

This thesis introduces a state-of-the-art unsupervised grammar induction

procedure. We use Combinatory Categorial Grammars to produce labeled

structures. This allows us to perform an in-depth linguistic analysis of the ap-

proach and a direct head-to-head performance comparisons with supervised

parsers on both syntactic and semantic evaluations.

Early work in grammar induction produced simpler, less descriptive, and

discriminating structures. This was essential for starting the field, but fun-

damentally limiting for its future success. Labeled structures, particularly

those that carry semantic content, are necessary for transitioning unsuper-

vised grammar induction from an intellectual curiosity to a standard tool in

the NLP toolkit.

In chapter 4, we introduced a novel means of inducing a minimally super-

vised grammar. We only assume knowledge of the basic distinction between

nouns and verbs, and demonstrated how this distinction can be leveraged

into the creation of a complete language specific grammar. Our approach

performs at or better than state-of-the-art in over a dozen languages (Chap-

ters 5 and 6). We achieve this with a novel factorization of CCG and non-

parametric model.

By diverging from previous work and using CCG (Chapter 3), we gleaned

important insights into necessary changes to the field of unsupervised gram-

mar induction (Chapter 7). We demonstrated how these structures can be

learned in a minimally supervised setting (Chapter 8), and how unsupervised

syntax can be used for semantic grounding (Chapter 9). All of these contri-

butions were made possible by our novel use of a rich syntactic formalism,

Combinatory Categorial Grammars, for producing an unsupervised parser.

Over the last decade grammar induction transitioned from parsing short

sentences in a few languages to reporting impressive performance on full

length sentences in over a dozen languages. We demonstrate in this the-
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sis that the numbers reported in the literature paint a rosier picture of the

utility of grammar induction approaches than what could be expected to

achieve in practice due to the common practice of evaluating an unlabeled

representation. Our work is the first to both automatically induce linguis-

tic labels (corresponding to adjective, transitive verb, verb/noun attaching

preposition, etc.) and accurately use them in an unsupervised framework.

These labels and the distinctions they make have long been essential to the

creation of supervised NLP systems. We demonstrated their utility for se-

mantics in Chapter 9, but believe the scope of their influence is much greater

and encompasses any current NLP or Data Mining system that includes a

syntactic parser.

Future Work Despite progress, both within this thesis and the field, there

is more work that needs to be done in both decreasing supervision and im-

proving grammar induction. Future work should harness more naturalistic

sources of supervision and make advances in the following areas:

1. Remove any reliance on Part-of-Speech tags

2. Integrate semantic feedback from the world

3. Model lexical semantics

We have demonstrated initial results on performing grammar induction

with knowledge of a three-way split between nouns, verbs, and others (Chap-

ter 8). There are distributional properties of these classes that may allow

for their discovery without labeling. But if our belief that nouns are truly

semantic primitives that are easiest to learn from the world is correct, we

should also be able to utilize object detection in vision, entities in databases,

or beings in a virtual world as sources of nouns/entities for learning. Fur-

ther, if verbs are special semantic predicates that form queries or describe

the interactions of people in the world, they too should be discoverable from

the environment without the need for explicit annotation.

One aspect of grammar induction that has become clear is how intercon-

nected syntax and semantics are. The fundamental limitation in progress in

grammar induction and closing the performance gap with supervised syntac-

tic parsers the need to capture semantics. Starting from the basic vocabulary
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of the grammar, up to the attachment decisions we make, and the form of the

categories, nearly every aspect of learning syntax is informing or informed

by semantics. It, therefore, seems silly to continue to treat the acquisition

of grammar as disjoint from semantics. Unfortunately, semantics is a vague

term within NLP and takes many forms. We will focus on two very concrete

definitions when discussing future work: Lexical and Database Semantics.

Lexical semantics attempts to use the distributional properties of word

co-occurrences to find low-dimensional vector spaces that maintain semantic

relations as spatial relations [165, 166, 167, 168, 169, 170]. These proper-

ties can be automatically extracted from the text and do a very good job

at finding typological information. Our approaches do not model lexical de-

pendencies. One might imagine that given clusters that separate the many

types of actors found in text (e.g. companies, people, animals) and their

respective actions (mergers and acquisitions versus run and play), a model

could be built to disambiguate many attachment decisions, particularly if the

model and representation can be trained jointly. This representation, with-

out grounding in an environment, will always be shallow, but potentially very

powerful.

Database/Logical semantics provide a less ambiguous representation of

world knowledge which can be directly queried. In the case of a robot in the

world, they can take an action and receive feedback from the environment.

In a database, the feedback comes as an answer to a query or a failure to

execute. By building off the work we have performed on grounding language

to Freebase, one can easily imagine re-incorporating that signal to improve

our model. By restructuring the training objective to take input from the

world, syntax can make predictions about the world, or content of a sentence,

and have the predictions verified experimentally through interaction with the

environment [171, 172].

While these are three very explicit next steps, our stance more holisti-

cally about language learning and grammar induction is that the syntax and

semantics must be learned jointly. POS tags are syntactically and semanti-

cally informative, syntax relies on and informs semantics, and semantics is

not recoverable in isolation. Whether the way forward is a loop [40] or a

joint model, we do not know, but future work should aim to build systems
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that learn from the environment and use as little supervision as possible. We

believe this will be possible by exploiting the natural supervision that exists

in each of these tasks alone: distributional regularities and feedback from the

environment.
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Appendix A

UPOS/Seed Knowledge

The following are cut-and-paste copies of the seed knowledge files used in

the thesis experiments. There are a number of places where performance can

be improved by removing the verb seed knowledge from specific tags (e.g.

Gerunds, some participles, etc) which should not act as heads of sentences.
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A.1 Hebrew UPOS tags

POS Tag UPOS Explanation

!!MISS!! X means analysis is not in the lexicon

!!SOME !! X

!!UNK!! X means the word is not in the lexicon

!!ZVL!! X

ADVERB ADV

AT X Accusative Marker

BN VERB

BN S PP VERB

BNT VERB Gerund

CC CONJ Coordinating conjunction

CC-COORD CONJ Coordinating conjunction

CC-REL CONJ

CC-SUB CONJ Subordinating conjunction

CD NUM Numeral (definite)

CDT NUM Numeral determiner (definite)

CONJ CONJ

COP VERB Copula

COP-TOINFINITIVE VERB to be

DEF DET The (H)

DEF@DT DET All (HKL)

DT DET Determiner

DTT DET All, how many

EX VERB Existential?

IN ADP Preposition (EL)

INTJ X Interjection

JJ ADJ Adjective (definite)

JJT ADJ Construct state adjective

MD VERB Modal

NCD NUM Date/Time

NN NOUN Noun (definite — definite-genetive)

NNP NOUN Proper noun

NNT NOUN Construct state noun

NN S PP NOUN Possessive noun (paney-hem)

P X Prefix

POS PRT Possessive item (shel)

PREPOSITION ADP

PRP PRON Personal Pronoun

PRP-REF PRON

PRP-PERS PRON

PRP-DEM ADP

PRP-IMP NOUN

PUNC .

QW X Question/WH word

RB ADV Adverb

REL ADP Relativizer

REL-SUBCONJ ADP (she)-lifnei etc
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A.1 cont’d

POS Tag UPOS Explanation

S ANP PRON Pronoun (suffix)

S PRN PRON Pronoun (suffix)

TEMP-SUBCONJ CONJ WH / Conj e.g. when KF

TTL DET Title

VB VERB Verb

VB-BAREINFINITIVE VERB

VB-TOINFINITIVE VERB
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A.2 Arabic (Coarse)

POS Tag Seed

A

C conj

D

G punct

F

I

-

N noun

Q noun

P

S noun

V verb

Y

Z noun

X
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A.3 Arabic

POS Tag Seed Explanation

Z- noun Proper nouns?

D- Adverb

Y- List item?

N- noun Noun

C- conj Conjunction

– the

VI verb Imperfect - Pain, Feel, Be, Riding

A- Adjective

VP verb Perfect - Ask, return, answered, achieved

VC verb Imperative - Check, called, note, let the

I- Hello, both, of course

FN PRT (e.g. no,but,not)

S- noun Pronoun

SR noun Pronoun

FI PRT (e.g. what,of,are)

G- punct Punctuation

SD noun Pronoun

Q- noun Number

F- PRT (e.g. the,has,any)

P- Preposition

X Lots of FW + ?
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A.4 Basque (Coarse)

We found several mappings to be inconsistent in the Shared Task data. Some

of the other possible interpretations are listed:

POS Tag Seed Alternatives

ADT verb X VERB

BEREIZ punct

ITJ noun

IZE noun ADV NOUN DET PRON X ADJ

BST noun X DET

DET noun

IOR noun

PRT

ADB

LOT conj

ERL

PUNT MARKA punct

ADL verb

HAOS

ADJ

ADI verb X VERB
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A.5 Basque

Again, there is some some inconsistency in the mappings

POS Tag Seed Alternatives/Explanation

BEREIZ punct ”

DZG noun DET

DZH noun DET

ADT verb VERB

PERIND noun PRON

PUNT KOMA punct conj , Comma

ERL PRT

ERKARR noun DET

PUNT PUNT punct .

PUNT GALD punct ?

BAN noun DET

ADI IZEELI verb VERB

SIN verb ADI SIN (VERB common ) ADJ SIN (adj, 1 in train)

IZE IZEELI noun NOUN

HAOS X (are → are being)

LIB noun Proper? Noun

PRT Yes, No

BST Usually, Then, Of

IZGGAL noun Who, Whom, ... Pronoun

ADT IZEELI verb VERB

PUNT ESKL punct !

IOR IZEELI noun our, mine, ... Pronoun

FAK verb VERB (ADI FAK)

ADB IZEELI ADV

PUNT BI PUNT punct

PERARR noun We, our, I ... Pronoun

PUNT HIRU punct :

LOK Also, In addition, ...

ERKIND noun DET

ELK noun PRON

IZB noun NOUN

ZKI noun NOUN (IZE ZKI)

ADP verb VERB (ADI ADP)

IZGMGB noun PRON (IOR IZGMGB)

MEN Although, and (... so SC and CC ? )

DET IZEELI noun DET

PUNT PUNT KOMA punct ;

ADL verb VERB (was?)

ADJ ADJ

ADK verb VERB (ADI ADK)

ARR (ADJ ARR = ADJ) (IZE ARR = NOUN) (ADB ARR = ADV)

ITJ X

JNT conj conj (LOT JNT)

ADJ IZEELI ADJ

NOLGAL noun DET (DET NOLGAL)
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A.5 cont’d

POS Tag UPOS Explanation

GAL (ABD GAL = ADV) (ADJ GAL = ADJ)

ORO noun DET (DET ORO)

ADL IZEELI verb VERB

ORD noun DET (DET ORD)

NOLARR noun DET (DET NOLARR)
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A.6 Bulgarian

POS Tag Seed Alternatives/Explanation

A Adjective

Af Adjective, feminine

Am Adjective, masculine

An Adjective, neuter

Cc conj Conjunction, coordinative

Cp conj Conjunction, subordinative

Cr conj Conjunction, repetitive coordinative

Cs conj Conjunction, single and reptitive coordinative

D Adverb

Dd Adverb, model

Dl Adverb, location

Dm Adverb, manner

Dq Adverb, quantity and degree

Dt Adverb, time

H Hybrid Adjective

Hf Hybrid Adjective, feminine

Hm Hybrid Adjective, masculine

Hn Hybrid Adjective, neuter

I Interjection

Mc noun Cardinal numerals

Md Adverbial numerals

Mo noun Ordinal numerals

My noun Fuzzy numerals about people (few,many)

N noun Noun

Nc noun Common nouns

Nm noun Noun masculin

Np noun Proper nouns

P noun Pronoun

Pc noun Collective pronouns

Pd noun Demonstrative pronouns

Pf noun Indefinite pronouns

Pi noun Interrogative pronouns

Pn noun Negative pronouns

Pp noun Personal pronouns

Pr noun Relative pronouns

Ps noun Possessive pronouns

Punct punct

R Preposition

Ta Particle, affirmative

Te Particle, emphasis

Tg Particle, gradable

Ti Particle, interrogative

Tm Particle, modal

Tn Particle, negative

Tv Particle, verbal

Tx Particle, auxiliary

183



A.6 cont’d

POS Tag UPOS Explanation

V verb Verb

Vii verb Auxiliary

Vni verb Verb, impersonal, imperfective

Vnp verb Verb, impersonal, perfective

Vpi verb Verb, personal, imperfective

Vpp verb Verb, personal, perfecive

Vxi verb Auxiliary (to be)

Vyp verb Auxiliary
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A.7 CHILDES (coarse)

POS Tag Seed

co

int noun

pro noun

tag punct

inf verb

conj conj

adv

neo

neg

. punct

rel conj

test

aux verb

adj

prep

fil

v verb

part verb

L2

fam

post

poss

mod verb

on

det noun

n noun

wplay

bab

chi

unk

qn noun
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A.8 CHILDES

POS Tag Seed Explanation

! punct

+”/. punct Quotation Follows (content from story reading)

+... punct Trailing off

+/. punct Interruption

. punct

? punct

0prep

0pro noun

L2 Second=language form

adj Adjective

adj:n Adjective, (Careless, Squirrely, ...)

adj:v Adjective, (Double, gently, ... )

adv Adverb (well)

adv:adj Adverb, ending in ly (quickly)

adv:int Adverb, intensifying (very, rather)

adv:loc Adverb, locative (here,then)

adv:tem Adverb, time (then, today)

adv:wh Adverb, (when, why)

aux verb verb, modal auxiliary

bab babbling

chi child-invented form

co Communicator (aha)

co#v verb (copilot)

co:voc (Dear) Adverb?

conj:coo conj Conjunction, coordinating (and,or)

conj:sub Conjunction, subordinating (if, although)

conj:subor Conjunction,

det noun Determiner

det:num noun Number

det:wh noun (Which, Who)

dis#n:gerund noun (disappearing)

dis#part verb (disappeared)

dis#v verb (disappear)

fam Family-specific form (buba, oy )

fil Filler (hmm)

inf verb Infinitive market to

int interjection, interaction

mis#part verb (misplaced, misunderstood)

mod verb (did,do,may,will)

n noun Noun common

n:adj noun (-ness)

n:gerund noun -ing (missing, doing, ...)

n:let noun Multiple letters

n:prop noun Proper noun

n:pt noun (Pants, clothes)

n:v noun (-er)

neg negation

186



A.8 cont’d

POS Tag UPOS Explanation

neo neologism (becauses)

on onomatopoeia

part verb Participle (doing)

poss Possessive

post (else, too)

pre#n noun (preschool)

prep Preposition

pro noun Pronoun

pro:dem noun Pronoun, demonstrative (this, that)

pro:indef noun Pronoun (one,somebody,...)

pro:poss noun Pronoun (mine,yours,his)

pro:poss:det Pronoun (her, your)

pro:refl noun Pronoun ( -self )

pro:wh noun ( what )

qn Quantifier

re#part verb (reheated)

re#v verb (rewind)

rel (that, which)

tag punct (,,)

test test word

un#adj (un- ) unhappy,...

un#n noun (un- ) untie, unscrew, ...

un#part verb (un- ) unmade, untied, ...

un#v verb (un- ) untie, unbutton, ...

under#n noun (undershirt)

unk Excluded words (xxx,www,...)

v verb Verb

v:cop verb Verb, Copula (is,be)

wplay (caboozle, billy, toebow, ...)
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A.9 Chinese

POS Tag Seed Explanation

? punct

! punct

. punct

AD adverb

AS aspect particle

BA ba3 ba-construction: he BA you cheat AS <He cheated

you>

CC conj coordinating conjunction

CD noun cardinal number

CS subordinating conjunction

DEC de5 as a complementizer or a nominalizer: S/VP DEC NP

DEG de5 as a gitive marker and an associative marker:

NP/PP/JJ/DT DEG NP

DER Resultative de5: he run DER very fast

DEV Manner de5: happy DEV speak ¡speak happily¿

DT noun Determiner

ETC etc

FW Foreign Word

IJ Interjection

JJ noun-modifier

LB bei4 in long bei-construction: he LB I scold AS one M ¡He

was scolded by me¿

LC Localizer

M noun Measure Word

MSP Other Particle: appear before a VP

NN noun Other Noun

NR noun Proper Noun

NT noun Temporal Noun

OD noun Ordinal Number

ON noun Onomatopoeia

P Preposition

PN noun Pronoun

PU punct Punctuation

SB bei4 in short bei-construction: he SB scold AS one M ¡He

was scolded¿

SP Sentence-final particle

VA verb Predicate Adjective (verb)

VC verb Copula (verb)

VE verb you3 as the main verb

VV verb other verb
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A.10 Czech (Coarse)

POS Tag Seed Alternatives

A noun PRON ADJ

C noun

D

I

J conj NUM

N noun

P noun PRON ADP

R noun PRON ADP

T

V verb

X

Z punct
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A.11 Czech

POS Tag Seed Explanation

* noun Word krt (lit. times)

, Conjunction Subordinate

1 noun PRON

2 ADJ

4 noun Relative/interrogative pronoun w/ adjectival declension

5 noun The pronoun he in forms requested after any preposition

6 noun Reflexive pronoun se in long forms

7 noun Reflexive pronouns s, plus contracted

9 noun Relative pronoun ... after a preposition (n-: lit. who)

8 noun Possessive reflexive pronoun svj (lit. my/your/her/his when the possessor is the

subject of the sentence

: punct Punctuation

= noun Number written using digits

? noun Numeral kolik (lit. how many)

@ Unrecognized word form

A Adjective, general

B verb Verb, present or future form

C Adjective, nominal

D noun Pronoun, demonstrative (ten, onen, ..., lit. this, that, that ... over there, ... )

E noun Relative pronoun co (corresponding to English which in subordinate clauses

referring to a part of the preceding text)

F Preposition, part of; never appears isolated, always in a phrase (lit. regardless,

because of)

G Adjective derived from present transgressive form of a verb

H noun Personal pronoun, clitical (short) form

I Interjections

J noun Relative pronoun (not after a preposition)

K noun Relative/interrogative pronoun

L noun Pronoun, indefinite

M Adjective derived from verbal past transgressive form

N noun Noun (general)

O noun Pronoun

P noun Personal Pronoun

Q noun Pronoun relative/interrogative

R Preposition (general, without vocalization)

S Pronoun possessive

T Paricle

U Adjective possessive

V Preposition (w/ vocalization)

W noun Pronoun negative

X (Temporary) word form recognized, missing tag

Z noun Pronoun indefinite

ˆ conj Conjunction (connecting main clauses)

a noun Numeral, indefinite

b Adverb (w/ possibliel to form neg)

c verb Conditional

d noun Numeral, generic w/ Adjectival declension
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A.11 cont’d

POS Tag UPOS Explanation

e verb Verb, transgressive present

f verb Verb, infinitive

g Adverb, forming negation and comparision

h noun Numeral, Generic

i verb Verb, imperative

k noun Numeral, generic greater ≥ 4 used as adj

l noun Numeral, cardinal

m verb Verb, past transgressive

n noun Numeral, cardinal ≥ 5

o noun Numeral, multiplicative indefinite

p verb Verb, past participle, active

r noun Numeral, ordinal

s verb Verb, past participle, passive

t verb Verb, present or future tense

u noun Numeral, interrogative

v noun Numeral, multiplicative, definite

w noun Numeral, indefinite, adjectival declension

y noun Numeral, fraction ending at -ina, used as noun

} noun Numeral, written using Roman numerals
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A.12 Danish (Coarse)

POS Tag Seed Explanation

AC noun cardinal numeral

AN ’adjective’ encompasses ’normal’ adjectives

AO noun ordinal numerals

CC conj coordinating conjunctions

CS subordinating conjunctions

I noun Interjections

NC noun common nouns

NP noun proper nouns

PC noun Reciprocal pronouns

PD noun demonstrative pronouns

PI noun Indefinite pronouns

PO noun Possessive pronouns

PP noun Personal pronouns

PT noun interrogative/relative pronouns

RG adverbs

SP prepositions and postpositions

U most adverbs are marked as ’unmarked for degree’

VA verb ’main’ verb

VE verb ’medial’ verb

XA abbreviations

XF foreign words

XP punct Punctuation marks

XR sequences of number and letters are tagged

XS symbols

XX text errors

192



A.13 Danish

POS Tag Seed Explanation

AC—U=– noun Cardinal Number (Adj)

AC noun

AN

ANA—=-R Adj

ANA[CN][SP]U=DU Adj

ANC—=-R Adj

ANC[CN]PU=[DI]U Adj

ANC[CN]SU=IU Adj

ANC[CN][SP]G=[DI]U Adj

ANC[CN][SP]U=[DI]U Adj

ANP—=-R Adj

ANPCSU=IU Adj

ANPCSU=[DI]U Adj

ANPNSU=IU Adj

ANPNSU=[DI]U Adj

ANP[CN]PG=[DI]U Adj

ANP[CN]PU=[DI]U Adj

ANP[CN]SG=DU Adj

ANP[CN]SU=DU Adj

ANP[CN]SU=IU Adj

ANP[CN]SU=[DI]U Adj

ANP[CN][SP]U=[DI]U Adj

ANS—=-R Adj

ANS[CN]PU=DU Adj

ANS[CN]PU=[DI]U Adj

ANS[CN]SU=DU Adj

ANS[CN]SU=IU Adj

ANS[CN][SP]U=DU Adj

ANS[CN][SP]U=[DI]U Adj

AO—U=– noun Cardinal Number (Adj)

AO noun

CC conj Coordinating Conj

CS Subordinating Conj

I= Interjection

I

NC noun

NCCPG==D noun Noun

NCCPG==I noun Noun

NCCPU==D noun Noun

NCCPU==I noun Noun

NCCPU==[DI] noun Noun

NCCSG==D noun Noun

NCCSG==I noun Noun

NCCSU==D noun Noun

NCCSU==I noun Noun

NCNPG==D noun Noun

NCNPG==I noun Noun
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A.13 cont’d

POS Tag UPOS Explanation

NCNPU==D noun Noun

NCNPU==I noun Noun

NCNSG==D noun Noun

NCNSG==I noun Noun

NCNSU==D noun Noun

NCNSU==I noun Noun

NC[CN]PU==D noun Noun

NC[CN]PU==I noun Noun

NC[CN]SU==I noun Noun

NC[CN][SP]G==[DI] noun Noun

NC[CN][SP]U==I noun Noun

NC[CN][SP]U==[DI] noun Noun

NP noun

NP–G==- noun Noun

NP–U==- noun Noun

PC–PG— noun Pronoun

PC–PU— noun Pronoun

PC noun

PD-CSG–U noun Pronoun

PD-CSU–U noun Demonstrative Pronoun

PD-NSU–U noun Demonstrative Pronoun

PD-[CN]PU–U noun Pronoun

PD-[CN][SP]U–U noun Pronoun

PD noun

PI-CSG–U noun Pronoun

PI-CSU–U noun Indefinite Pronoun

PI-C[SP]N–U noun Pronoun

PI-NSU–U noun Indefinite Pronoun

PI-[CN]PG–U noun Pronoun

PI-[CN]PU–O noun Pronoun

PI-[CN]PU–U noun Pronoun

PI noun

PO1CSUPNF noun Pronoun

PO1CSUSNU noun Pronoun

PO1NSUPNF noun Pronoun

PO1NSUSNU noun Pronoun

PO1[CN]PUPNF noun Pronoun

PO1[CN]PUSNU noun Pronoun

PO1[CN][SP]UPNU noun Pronoun

PO2CSUSNU noun Pronoun

PO2NSUSNU noun Pronoun

PO2[CN]PUSNU noun Pronoun

PO2[CN][SP]UPNU noun Pronoun

PO2[CN][SP]U[SP]NP noun Pronoun

PO3CSUSYU noun Pronoun

PO3NSUSYU noun Pronoun

PO3[CN]PUSYU noun Pronoun

PO3[CN][SP]UPNU noun Pronoun

PO3[CN][SP]USNU noun Pronoun
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A.13 cont’d

POS Tag UPOS Explanation

PO noun

PP1CPN-NU noun Pronoun

PP1CPU-[YN]U noun Pronoun

PP1CSN-NU noun Pronoun

PP1CSU-[YN]U noun Pronoun

PP2CPN-NU noun Pronoun

PP2CPU-[YN]U noun Pronoun

PP2CSN-NU noun Pronoun

PP2CSU-[YN]U noun Pronoun

PP2C[SP]N-NP noun Pronoun

PP2C[SP]U-[YN]P noun Pronoun

PP3CSN-NU noun Pronoun

PP3CSU-NU noun Pronoun

PP3NSU-NU noun Pronoun

PP3[CN]PN-NU noun Pronoun

PP3[CN]PU-NU noun Pronoun

PP3[CN][SP]U-YU noun Pronoun

PP noun

PT-CSU–U noun Pronoun

PT-C[SP]U–U noun Pronoun

PT-NSU–U noun Pronoun

PT-[CN]PU–U noun Pronoun

PT-[CN]SU–U noun Pronoun

PT-[CN][SP]G–U noun Pronoun

PT noun

RGA Adverb

RGC Adverb

RGP Adverb

RGS Adverb

RGU Adverb

RG

SP Preposition

U= Unique

U

VADA=—-A- verb Indicative (Verb)

VADA=—-P- verb Indicative (Verb)

VADR=—-A- verb Indicative (Verb)

VADR=—-P- verb Indicative (Verb)

VAF-=—-A- verb Infinitive (Verb)

VAF-=—-P- verb Infinitive (Verb)

VAG-=SCI–U verb Gerund (Verb)

VAM-=—— verb Imperative (Verb)

VAPA=P[CN][DI]A-G verb preterite participle (Verb)

VAPA=P[CN][DI]A-U verb preterite participle (Verb)

VAPA=SCDA-U verb preterite participle (Verb)

VAPA=S[CN]DA-U verb preterite participle (Verb)

VAPA=S[CN]IA-U verb preterite participle (Verb)

VAPA=S[CN]I[ARU]-U verb preterite participle (Verb)

VAPR=—R– verb present participle (Verb)
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A.13 cont’d

POS Tag UPOS Explanation

VAPR=[SP][CN][DI]A-U verb present participle (Verb)

VAPR=[SP][CN][DI][ARU]-U verb present participle (Verb)

VA verb

VEDA=—-A- verb Indicative (Verb)

VEDR=—-A- verb Indicative (Verb)

VEF-=—-A- verb Infinitive (Verb)

VEPA=[SP][CN][DI][ARU]-U verb preterite participle (Verb)

VE verb

XA Abbreviation

XF Foreign Word

XP punc Residual Quote

XR Residual

XS Symbol

XX Other
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A.14 Dutch (coarse)

POS Tag Seed Explanation

Adj Adjective

Adv Adverb

Art noun Article / Determiner

Conj conj Conjunction

Int noun Interjection

MWU Multiword unit

Misc

N noun Noun

Num noun Number

Prep Preposition

Pron noun Pronoun

Punc punct Punctuation

V verb Verb
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A.15 Dutch

POS Tag Seed Explanation

Adj Adjective

Adj Adj

Adj Adj N

Adj Adj N Adj N N

Adj Adj N N

Adj Adv

Adj Art

Adj Conj V

Adj Int

Adj Misc Misc

Adj N

Adj N Conj N

Adj N N

Adj N N N

Adj N N N N

Adj N N N N N

Adj N Num

Adj N Prep Art Adj N

Adj N Prep Art N

Adj N Prep N

Adj N Prep N Conj N

Adj N Prep N N

Adj N Punc

Adj Num

Adj Prep

Adj V

Adj V Conj V

Adj V N

Adv Adverb

Adv Adj

Adv Adj Conj

Adv Adv

Adv Adv Conj Adv

Adv Art

Adv Conj

Adv Conj Adv

Adv Conj N

Adv N

Adv Num

Adv Prep

Adv Prep N

Adv Prep Pron

Adv Pron

Adv V

Art noun Article / Determiner

Art Adj

Art Adj N
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A.15 cont’d

POS Tag UPOS Explanation

Art Adj N Prep Art N Conj -

V N

Art Adv

Art Conj Pron

Art N

Art N Conj

Art N Conj Art N

Art N Conj Art V

Art N Conj Pron N

Art N N

Art N Prep Adj

Art N Prep Art N

Art N Prep N

Art N Prep Pron N

Art Num

Art Num Art Adj

Art Num N

Art Pron

Art Pron N

Art V N

Conj conj Conjnction

Conj Adj

Conj Adv

Conj Adv Adv

Conj Art N

Conj Conj

Conj Int

Conj N

Conj N Adv

Conj N Prep

Conj Pron

Conj Pron Adv

Conj Pron V

Conj Punc Conj conj

Conj V

Int Interjection

Int Adv

Int Int

Int N N Misc N

Int N Punc Int N

Int Punc Int

Misc

Misc Misc

Misc Misc Misc

Misc Misc Misc Misc

Misc Misc Misc Misc Misc -

Misc

Misc Misc Misc Misc Misc -

Misc Misc
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A.15 cont’d

POS Tag UPOS Explanation

Misc Misc Misc Misc Misc -

Misc Misc Misc Misc

Misc Misc Misc Misc Misc -

Misc Punc Misc Misc Misc

Misc Misc Misc Misc Misc N -

Misc Misc Misc Misc Misc -

Misc

Misc Misc Misc N

Misc Misc N

Misc Misc N N

Misc Misc Punc N N

Misc N

Misc N Misc Misc

Misc N N

N noun Noun

N Adj noun

N Adj N noun

N Adj N Num noun

N Adv noun

N Adv Punc V Pron V noun

N Art Adj Prep N noun

N Art N noun

N Conj noun

N Conj Adv noun

N Conj Art N noun

N Conj N noun

N Conj N N noun

N Int N noun

N Misc noun

N Misc Misc noun

N Misc Misc Misc Misc noun

N Misc Misc N noun

N Misc N noun

N Misc N N noun

N Misc N N N N noun

N Misc Num noun

N N noun

N N Adj noun

N N Adj Art N N noun

N N Adj N noun

N N Adv noun

N N Art Adv noun

N N Art N noun

N N Conj noun

N N Conj N noun

N N Conj N N noun

N N Conj N N N N N noun

N N Int N N noun
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A.15 cont’d

POS Tag UPOS Explanation

N N Misc noun

N N Misc Misc Misc noun

N N N noun

N N N Adj N noun

N N N Adv noun

N N N Conj N noun

N N N Int noun

N N N Misc noun

N N N N noun

N N N N Conj N noun

N N N N Misc noun

N N N N N noun

N N N N N N noun

N N N N N N Int noun

N N N N N N N noun

N N N N N N Prep N noun

N N N N N Prep N noun

N N N N Prep N noun

N N N N Punc N Punc noun

N N N N V noun

N N N Prep Art Adj N noun

N N N Prep N noun

N N N Prep N N noun

N N N Punc noun

N N N Punc N noun

N N Num noun

N N Num N noun

N N Prep Art Adj N noun

N N Prep Art N noun

N N Prep Art N Prep Art N noun

N N Prep N noun

N N Prep N N noun

N N Prep N Prep Adj N noun

N N Punc N Punc noun

N Num noun

N Num N noun

N Num N N noun

N Num N Num noun

N Num Num noun

N Prep noun

N Prep Adj Adj N noun

N Prep Adj N noun

N Prep Art N noun

N Prep Art N Art N noun

N Prep Art N N noun

N Prep Art N Prep Art N noun

N Prep N noun

N Prep N Art Adj noun

N Prep N N noun
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A.15 cont’d

POS Tag UPOS Explanation

N Prep N Prep Art N noun

N Prep N Prep N Conj N -

Prep Art N N

noun

N Prep N Punc N Conj N noun

N Prep Num noun

N Prep Pron N noun

N Pron noun

N Punc Adj N noun

N Punc Adj Pron Punc noun

N Punc Adv V Pron N noun

N Punc Misc Punc N noun

N Punc N noun

N Punc N Conj N noun

N Punc N N N N noun

N Punc N Punc noun

N Punc N Punc N noun

N Punc Punc N N Punc -

Punc N

noun

N V noun

N V N noun

N V N N noun

Num noun Number

Num Adj noun

Num Adj Adj N noun

Num Adj N noun

Num Conj Adj noun

Num Conj Art Adj noun

Num Conj Num noun

Num Conj Num N noun

Num N noun

Num N N noun

Num N Num noun

Num N Num Num N noun

Num Num noun

Num Num N noun

Num Prep Num noun

Num Punc noun

Num Punc Num noun

Num Punc Num N N noun

Prep Preposition

Prep Adj

Prep Adj Conj Prep N

Prep Adj N

Prep Adv

Prep Art

Prep Art Adj

Prep Art Adj N

Prep Art Misc Misc
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A.15 cont’d

POS Tag UPOS Explanation

Prep Art N

Prep Art N Adv

Prep Art N Art N

Prep Art N Prep

Prep Art N Prep Art N

Prep Art N V

Prep Art V

Prep Conj Prep

Prep Misc

Prep N

Prep N Adv

Prep N Conj

Prep N Conj N

Prep N N

Prep N Prep

Prep N Prep N

Prep N V

Prep Num

Prep Num N

Prep Prep

Prep Prep Adj

Prep Prep Adv

Prep Prep Art N

Prep Pron

Prep Pron Adj

Prep Pron N

Prep Pron N Adv

Prep Punc N Conj N

Prep V

Prep V N

Prep V Pron Pron Adv

Pron noun Pronoun

Pron Adj noun

Pron Adj N Punc Art Adj N -

Prep Art Adj N

noun

Pron Adv noun

Pron Art noun

Pron Art N N noun

Pron N noun

Pron N Adv noun

Pron N V Adv Num Punc noun

Pron N V Conj N noun

Pron Prep noun

Pron Prep Art noun

Pron Prep N noun

Pron Prep Pron noun

Pron Pron noun

Pron Pron V noun
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A.15 cont’d

POS Tag UPOS Explanation

Pron V noun

Pron V V noun

Punc punct Punctuation

Punc Int Punc N N N Punc -

Pron V Pron Adj V Punc

Punc N Punc N

Punc Num

Punc Num Num

V verb Verb

V Adj N

V Adv

V Adv Art N Prep Pron N

V Art N

V Art N Num N

V Conj N N

V Conj Pron

V N

V N Conj Adj N Prep Art N

V N Misc Punc

V N N

V N V

V Prep

V Pron

V Pron Adv

V Pron Adv Adv Pron V

V Pron V

V V verb

204



A.16 English (Coarse)

POS Tag Seed Explanation

WD Wh-determiner

FW noun Foreign word

WR Wh-adverb

JJ Adjective

WP Wh-pronoun

DT noun Determiner

PR noun Pronoun

RP Particle

NN noun Noun

TO To

LS List

RB

PO Possessive Engind?

VB verb verb

PD Predeterminer

CC conj Coordinating conjunction

CD noun Numeral

EX noun Existential there

IN Preposition or subordinating conjunction

MD verb Model

SY Symbol

UH noun Interjection
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A.17 English

POS Tag Seed Explanation

, punct conj Comma

; punct conj Semi-Colon

CC conj Coordinating conjunction

CD noun Cardinal number

DT noun Determiner

EX noun Existential there

FW noun Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD verb Modal

NN noun Noun, singular or mass

NNS noun Noun, plural

NNP noun Proper noun, singular

NNPS noun Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP noun Personal pronoun

PRP$ noun Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH noun Interjection

VB verb Verb, base form

VBD verb Verb, past tense

VBG verb Verb, gerund or present participle

VBN verb Verb, past participle

VBP verb Verb, non-3rd person singular present

VBZ verb Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb
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A.18 Japanese

POS Tag Seed Explanation

– verb noun Not assigned (Nicht zugeordnet) - disfluencies

ADJ Atributive adjective

ADJ n na-adjective

ADJdem Demonstrative adverb

ADJicnd i-adjective (conditional)

ADJifin i-adjective ( finite )

ADJiku i-adjective ( -ku ending)

ADJite i-adjective ( -te ending)

ADJsf Adjective suffix

ADJteki na-adjective ( -teki ending)

ADJwh Wh Adjective

ADV ADVerbials in general

ADVdem Demonstrative adverb

ADVdgr Degree adverb

ADVtmp Temporal adverb

ADVwh Wh adverb

CD noun Cardinal number

CDU noun Cardinal unit

CDdate noun Cardinal date unit

CDtime noun Cardinal time unit

CNJ Conjunction

GR noun Greeting (noun?)

ITJ noun Interjection (noun?)

NAME noun Other proper noun

NAMEloc noun Proper noun; location

NAMEorg noun Proper noun; organization

NAMEper noun Proper noun; person

NF noun Formal noun

NN noun Common noun

NT noun

Ndem noun Demonstarative noun

Nsf noun Noun sufix

Ntmp noun Noune (temporal)

Nwh noun Wh noun

P Postposition

PADJ Particle adjective

PADV Particle adverb

PNsf Personal name suffix

PQ Quotative postposition

PRON noun Pronoun

PSE Sentence end postposition

PSSa verb Subordinate S postposition (and)

PSSb verb Subordinate S postposition (but)

PSSq Subordinate S postposition (question)

PV verb Particle verb

PVcnd verb Particle verb (conditional)

PVfin verb Particle verb (finite)

PVte verb Particle verb (-te ending)
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A.18 cont’d

POS Tag UPOS Explanation

Pacc Accusative case

Pcnj conj Conjunctive particle

Pfoc Focus

Pgen Genitive case

Pnom Nominative case

PreN Noun prefix

UNIT noun Unit

V verb Verb (other forms)

VADJ n verb Verb na-adjective

VADJi verb Verb i-adjective

VADJicnd verb Verb i-adjective (conditional)

VAUX verb Auxiliary verb

VAUXbas verb Auxiliary verb (base)

VAUXcnd verb Auxiliary verb (conditional)

VAUXfin verb Auxiliary verb (finite)

VAUXimp verb

VAUXte verb Auxiliary verb (-te ending)

VN noun Verbal noun

VS verb Support verb

VSbas verb Support verb (base)

VScnd verb Support verb (conditional)

VSfin verb Support verb (finite)

VSimp verb Support verb (imperative)

VSte verb Support verb (-te ending)

Vbas verb Verb (base)

Vcnd verb Verb (conditional)

Vfin verb Verb (finite)

Vimp verb Verb (imperative)

Vte verb Verb (-te/de ending)

xxx Tokenizing problem
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A.19 Portuguese (Coarse)

POS Tag Seed Explanation

adv adverb

pp noun prepositional phrase

art noun article

in noun interjection

intj noun interjection

ec

n noun noun

vp verb verb phrase

pron noun pronoun

num noun numeral

prp preposition

v verb verb

punc punct punctuation

conj conj conjunction

prop noun proper noun

adj adjective
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A.20 Portuguese

POS Tag Seed Explanation

art article

v-inf verb infinitive

v-ger verb gerund

ec

vp verb verb phrase (missing in train 2)

num noun numeral

prp preposition

in noun interjection

intj noun interjection (train 2)

adv adverb

pp prepositional phrase

pu (train 2)

prop noun proper noun

v-fin verb finite verb

adj adjective

? punct (missing in train 2)

conj-c conj coordinating conjunction

conj-s suordination conjunction

pron-pers noun personal pronoun

punc punct

pron-det noun determiner pronoun

n-adj (train 2)

v-pcp participle

pron-indp noun independent pronoun

n noun noun
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A.21 Slovene (Coarse)

POS Tag Seed Explanation

Adjective Noun noun

Pronoun noun

Adverb

Abbreviation

Residual

Particle

Preposition

Verb verb

Numeral noun

PUNC punct

Conjunction conj

Interjection noun
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A.22 Slovene

POS Tag Seed Explanation

Pronoun-general noun

Residual

Numeral-ordinal noun

Pronoun-personal noun

Adjective-general

Adverb-general

PUNC punct

Adjective-participle

Adverb-participle

Pronoun-reflexive noun

Interjection noun

Conjunction-coordinating conj

Numeral-special noun

Numeral-cardinal noun

Particle

Noun-common noun

Pronoun-indefinite noun

Pronoun-interrogative noun

Adjective-possessive

Adjective-ordinal

Adjective-qualificative

Adposition-preposition

Pronoun-possessive noun

Noun-proper noun

Pronoun-demonstrative noun

Verb-main verb

Pronoun-negative noun

Conjunction-subordinating

Residual-foreign

Pronoun-relative noun

Abbreviation

Preposition

Verb-auxiliary verb

Verb-copula verb

Verb-modal verb

Numeral-pronominal noun

Numeral-multiple noun
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A.23 Spanish

POS Tag Seed Explanation

Fa punct Punctuation

Fc punct Punctuation

Fd punct Punctuation

Fe punct Punctuation

Fg punct Punctuation

Fh punct Punctuation

Fi punct Punctuation

Fp punct Punctuation

Fs punct Punctuation

Fx punct Punctuation

Fz punct Punctuation

X

Y Abbreviation

Zm noun number

Zp noun number

ao adjective ordinal

aq adjective qualifying

cc conj Coordinating Conjunction

cs Subordinating Conjunction

da noun Determiner article

dd noun Determiner demonstrative numeral

de noun Determiner

di noun Determiner indefinite

dn noun Determiner

dp noun Determiner

dt noun Determiner

i noun Interjection

nc noun noun common

np noun noun proper

p0 noun Pronoun

pd noun Pronoun demonsrtative

pe noun Pronoun

pi noun Pronoun indefinite

pn noun Pronoun numeral

pp noun Pronoun

pr noun Pronoun relative interrogative

pt noun Pronoun

px noun Pronoun

rg adverb general

rn adverb negative

sn Preposition

sp Preposition

va verb verb auxiliary

vm verb verb main

vs verb verb semiauxiliary

w noun Date

z noun Number
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A.24 Swedish

POS Tag Seed Explanation

SP verb Present participle – Present participle

FV verb The verb ”f” (get)

HV verb The verb ”ha(va)” (have)

YY Interjection

WV verb The verb ”vilja” (want)

BV verb The verb ”bli(va)” (become)

AB Adverb

PR Preposition

NN noun Other noun

PU punct Pause – List item (bullet or number) : Punct

TP noun Totality pronoun – Perfect participle

RO noun Numeral other than ”en”, ”ett” (one)

PN noun Proper name

PO noun Pronoun

IR punct Parenthesis

GV verb The verb ”gra” (do, make)

EN Indefinite article or numeral ”en”, ”ett” (one)

IQ punct Colon

IP punct Period

IS punct Semicolon

AJ Adjective

IU punct Exclamation mark

IT punct Dash

VN noun Verbal noun

AN noun Adjectival noun

IK punct Comma

IM Infinitive marker

VV verb Other verb

AV verb The verb ”vara” (be)

IC punct Quotation mark

ID Part of idiom (multi-word unit)

IG punct Other punctuation mark

I? punct Question mark

QV verb The verb ”kunna” (can)

++ conj Coordination conjunction

XX Unclassified POS

MN Adversative – Meta-noun

SV verb The verb ”skola” (will,shall)

MV verb The verb ”mste” (must)

KV verb The verb locution ”komma att” (periphrastic future)

UK Subordinating conjunction
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A.25 German (Tiger)

POS Tag Seed Explanation

ADJA Adjective, attributive

ADJD adjective, adverbial or predicative

ADV adverb

APPO postposition

APPR preposition; circumposition left

APPRART preposition with article

APZR circumposition right

ART noun definite or indefinite article

CARD noun cardinal number

FM foreign language material

ITJ interjection

KOKOM comparative conjunction

KON conj coordinate conjunction

KOUI subordinate conjunction with zu and infinitive

KOUS subordinate conjunction with sentence

NE noun proper noun

NN noun common noun

NNE noun

PAV noun pronominal adverb

PDAT noun attributive demonstrative pronoun

PDS noun substituting demonstrative pronoun

PIAT noun attributive indefinite pronoun without determiner

PIDAT noun attributive indefinite pronoun with determiner

PIS noun substituting indefinite pronoun

PPER noun non-reflexive personal pronoun

PPOSAT noun attributive possessive pronoun

PPOSS noun substituting possessive pronoun

PRELAT noun attributive relative pronoun

PRELS noun substituting relative pronoun

PRF noun reflexive personal pronoun

PROAV noun

PTKA particle with adjective or adverb

PTKANT answer particle

PTKNEG negative particle

PTKVZ separable verbal particle

PTKZU zu before infinitive

PWAT noun attributive interrogative pronoun

PWAV noun adverbial interrogative or relative pronoun

PWS noun substituting interrogative pronoun

SGML SGML markup

SPELL letter sequence

TRUNC word remnant

VAFIN verb finite verb, auxiliary

VAIMP verb imperative, auxiliary

VAINF verb infinitive, auxiliary

VAPP verb perfect participle, auxiliary

VMFIN verb finite verb, modal

VMINF verb infinitive, modal

215



A.25 cont’d

POS Tag UPOS Explanation

VMPP verb

VVFIN verb finite verb, full

VVIMP verb imperative, full

VVINF verb infinitive, full

VVIZU verb Infinitive with zu, full

VVPP verb perfect participle, full

XY non-word containing non-letter
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Structure, Montréal, Canada, June 2012, pp. 105–110.

[44] Y. Huang, M. Zhang, and C. L. Tan, “Improved Combinatory Cate-
gorial Grammar Induction with Boundary Words and Bayesian Infer-
ence,” in Proceedings of the 24rd International Conference on Compu-
tational Linguistics (Coling 2012), Mumbai, India, Dec. 2012.

[45] V. I. Spitkovsky, H. Alshawi, and D. Jurafsky, “Breaking Out of Local
Optima with Count Transforms and Model Recombination: A Study
in Grammar Induction,” in Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing, 2013, pp. 1983–1995.

220
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June 2012, pp. 64–80.

[64] M. Collins, “Head-Driven Statistical Models for Natural Language
Parsing,” Computational Linguistics, vol. 29, no. 4, pp. 589–637, Dec.
2003.

222

http://www.aclweb.org/anthology/D/D07/D07-1096


[65] K. Ajdukiewicz, “Die syntaktische Konnexität,” in Polish Logic 1920-
1939, S. McCall, Ed. Oxford University Press, 1935, pp. 207–231,
translated from Studia Philosophica, 1, 1-27.

[66] Y. Bar-Hillel, “A quasi-arithmetical notation for syntactic description,”
Language, vol. 29, pp. 47–58, 1953.

[67] A. E. Ades and M. J. Steedman, “On the order of words,” Linguistics
and Philosophy, vol. 4, no. 4, pp. 517–558, 1982.

[68] M. Steedman, Surface structure and interpretation. The MIT Press,
Jan. 1996.

[69] H. B. Curry and R. Feys, Combinatory Logic. Amsterdam: North-
Holland, 1958, vol. I.

[70] J. Hockenmaier and M. Steedman, “CCGbank: A Corpus of CCG
Derivations and Dependency Structures Extracted from the Penn Tree-
bank,” Computational Linguistics, vol. 33, pp. 355–396, Sep. 2007.

[71] J. Bos, “Wide-Coverage Semantic Analysis with Boxer,” in Semantics
in Text Processing. STEP 2008 Conference Proceedings, ser. Research
in Computational Semantics, J. Bos and R. Delmonte, Eds.
College Publications, 2008, vol. 1, pp. 277–286. [Online]. Available:
http://www.aclweb.org/anthology/W08-2222

[72] S. Reddy, M. Lapata, and M. Steedman, “Large-scale Semantic Parsing
without Question-Answer Pairs,” Transactions of the Association for
Computational Linguistics, pp. 1–16, June 2014.

[73] D. Gildea and J. Hockenmaier, “Identifying Semantic Roles Using Com-
binatory Categorial Grammar,” in Proceedings of the 2003 Conference
on Empirical Methods in Natural Language Processing, 2003, pp. 57–64.

[74] A. Church, “An unsolvable problem of elementary number theory,”
American Journal of Mathematics, vol. 58, no. 2, pp. pp. 345–363,
1936. [Online]. Available: http://www.jstor.org/stable/2371045

[75] S. C. Kleene, “λ -definability and recursiveness,” Duke Math. J., vol. 2,
no. 2, pp. 340–353, 06 1936.

[76] S. Kleene, “General recursive functions of natural numbers,” Mathe-
matische Annalen, vol. 112, no. 1, pp. 727–742, 1936.

[77] A. M. Turing, “Computability and -definability,” The Journal of
Symbolic Logic, vol. 2, no. 4, pp. pp. 153–163, 1937. [Online].
Available: http://www.jstor.org/stable/2268280

223

http://www.aclweb.org/anthology/W08-2222
http://www.jstor.org/stable/2371045
http://www.jstor.org/stable/2268280


[78] Y. Artzi and L. S. Zettlemoyer, “Bootstrapping Semantic Parsers from
Conversations,” in Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, Edinburgh, Scotland, UK.,
July 2011.

[79] C. Matuszek, N. FitzGerald, L. S. Zettlemoyer, L. Bo, and D. Fox,
“A Joint Model of Language and Perception for Grounded Attribute
Learning,” in International conference on Machine learning, June 2012.

[80] J. Krishnamurthy and T. M. Mitchell, “Weakly Supervised Training
of Semantic Parsers,” in Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning. Jeju Island, Korea: Carnegie Mellon
University, July 2012, pp. 754–765.

[81] Y. Artzi and L. S. Zettlemoyer, “Weakly Supervised Learning of Se-
mantic Parsers for Mapping Instructions to Actions,” Transactions of
the Association for Computational Linguistics, pp. 49–62, 2013.

[82] T. Kwiatkowski, E. Choi, Y. Artzi, and L. S. Zettlemoyer, “Scaling
Semantic Parsers with On-the-Fly Ontology Matching,” in Proceedings
of the 2013 Conference on Empirical Methods in Natural Language
Processing. Seattle, Washington, USA: Association for Computational
Linguistics, Oct. 2013, pp. 1545–1556.

[83] Y. Artzi, D. Das, and S. Petrov, “Learning compact lexicons for ccg
semantic parsing,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP). Doha, Qatar:
Association for Computational Linguistics, October 2014, pp. 1273–
1283.

[84] J. Hockenmaier, “Data and models for statistical parsing with Combi-
natory Categorial Grammar,” Ph.D. dissertation, PhD Thesis, School
of Informatics. Edinburgh, Jan. 2003.

[85] S. Clark and J. Curran, “Wide-Coverage Efficient Statistical Parsing
with CCG and Log-Linear Models,” Computational Linguistics, vol. 33,
pp. 493–552, Mar. 2007.

[86] J. Hockenmaier and P. Young, “Non-local scrambling: the equivalence
of TAG and CCG revisited,” in Workshop on Tree Adjoining Grammars
and Related Formalisms, Apr. 2008, p. 8.

[87] S. Clark, “Supertagging for Combinatory Categorial Grammar,” in
Proceedings of the 6th International Workshop on Tree Adjoining
Grammars and Related Frameworks (TAG+6), Venice, Italy, 2002, pp.
19 – 24.

224



[88] J. Eisner, “Efficient Normal-Form Parsing for Combinatory Categorial
Grammar,” in Proceedings of the 34th Annual Meeting of the Associa-
tion for Computational Linguistics, Santa Cruz, California, USA, June
1996, pp. 79–86.

[89] J. Hockenmaier and Y. Bisk, “Normal-form parsing for Combinatory
Categorial Grammars with generalized composition and type-raising,”
in Proceedings of the 23rd International Conference on Computational
Linguistics (Coling 2010), Beijing, China, Aug. 2010, pp. 465–473.

[90] W. Buszkowski and G. Penn, “Categorial Grammars Determined from
Linguistic Data by Unification,” Studia Logica: An International Jour-
nal for Symbolic Logic, vol. 49, no. 4, pp. 431–454, Jan. 1990.

[91] M. Osborne and T. Briscoe, “Learning Stochastic Categorial Gram-
mars,” in Conference on Computational Natural Language Learning,
Jan. 1997.

[92] J. Hockenmaier, “Creating a CCGbank and a Wide-Coverage CCG
Lexicon for German,” in Proceedings of the 21st International Con-
ference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics. Sydney, Australia: Asso-
ciation for Computational Linguistics, July 2006, pp. 505–512.

[93] D. Tse, “Chinese CCGBank: Deep Derivations and Dependencies for
Chinese CCG Parsing,” Ph.D. dissertation, The University of Sydney,
2013.

[94] M. Honnibal, J. Nothman, and J. R. Curran, “Evaluating a Statistical
CCG Parser on Wikipedia,” in Proceedings of the 2009 Workshop on
The People’s Web Meets NLP: Collaboratively Constructed Semantic
Resources, August 2009, pp. 38–41.

[95] S. A. Boxwell and C. Brew, “A Pilot Arabic CCGbank,” in Proceedings
of the Seventh International Conference on Language Resources and
Evaluation (LREC’10), may 2010.

[96] S. Uematsu, T. Matsuzaki, H. Hanaoka, Y. Miyao, and H. Mima, “In-
tegrating Multiple Dependency Corpora for Inducing Wide-coverage
Japanese CCG Resources,” in Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long
Papers). Sofia, Bulgaria: Association for Computational Linguistics,
Aug. 2013, pp. 1042–1051.

[97] B. R. Ambati, T. Deoskar, and M. Steedman, “Using CCG categories to
improve Hindi dependency parsing,” in Proceedings of the 51st Annual
Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), August 2013, pp. 604–609.

225



[98] J. Hockenmaier and M. Steedman, “Generative Models for Statisti-
cal Parsing with Combinatory Categorial Grammar,” in Proceedings of
40th Annual Meeting of the Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA, July 2002, pp. 335–342.

[99] J. Hockenmaier, “Parsing with generative models of predicate-
argument structure,” in Association for Computational Linguistics,
2003, p. 366.

[100] M. Auli and A. Lopez, “A Comparison of Loopy Belief Propagation
and Dual Decomposition for Integrated CCG Supertagging and Pars-
ing,” in Proceedings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies, Portland,
Oregon, USA, June 2011.

[101] M. Lewis and M. Steedman, “Improved CCG Parsing with Semi-
supervised Supertagging,” Transactions of the Association for Com-
putational Linguistics, vol. 2, no. 10, pp. 327–338, Oct. 2014.

[102] M. Lewis and M. Steedman, “A* ccg parsing with a supertag-factored
model,” in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), October 2014, pp. 990–1000.

[103] D. Garrette, C. Dyer, J. Baldridge, and N. A. Smith, “Weakly-
Supervised Grammar-Informed Bayesian CCG Parser Learning,” in
Proceedings of the Association for the Advancement of Artificial In-
telligence, 2015.

[104] T. A. D. Fowler and G. Penn, “Accurate Context-Free Parsing with
Combinatory Categorial Grammar,” in Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics. Uppsala,
Sweden: Association for Computational Linguistics, July 2010, pp.
335–344.

[105] N. Chomsky, “Remarks on nominalization,” Reading in English Trans-
formational Grammar, pp. 184–221, 1970.

[106] B. Snyder, T. Naseem, and R. Barzilay, “Unsupervised Multilingual
Grammar Induction,” in Proceedings of the Joint Conference of the
47th Annual Meeting of the ACL and the 4th International Joint Con-
ference on Natural Language Processing of the AFNLP, Suntec, Singa-
pore, Aug. 2009, pp. 73–81.

[107] A. Haghighi and D. Klein, “Prototype-Driven Grammar Induction,”
in Association for Computational Linguistics. Morristown, NJ, USA:
Association for Computational Linguistics, 2006, pp. 881–888.

226



[108] R. H. Robins, “Noun and verb in universal grammar,” Language,
vol. 28, no. 3, pp. 289–298, 1952.

[109] T. Givon, On understanding grammar. New York: Academic Press,
1979.

[110] P. Schachter, “Parts-of-speech systems,” Language typology and syn-
tactic description. Vol. 1: Clause structure, pp. 3–61, 1985.

[111] J. A. Hawkins, Explaining language universals. Cambridge, MA: Basil
Blackwell, Inc, 1988.

[112] Y. Bisk and J. Hockenmaier, “Simple Robust Grammar Induc-
tion with Combinatory Categorial Grammars,” in Proceedings of
the Twenty-Sixth Conference on Artificial Intelligence (AAAI-12),
Toronto, Canada, July 2012, pp. 1643–1649.

[113] K. Lari and S. J. Young, “Applications of stochastic context-free gram-
mars using the Inside-Outside algorithm,” Computer speech & lan-
guage, vol. 5, no. 3, pp. 237–257, Jan. 1991.

[114] A. Dempster, N. Laird, and D. Rubin, “Maximum likelihood from in-
complete data via the EM algorithm,” Journal of the Royal Statistical
Society. Series B (Methodological), Jan. 1977.

[115] M. Surdeanu, R. Johansson, A. Meyers, L. Màrquez, and J. Nivre,
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