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Abstract

In this paper, we study the problem of mapping natural lan-
guage instructions to complex spatial actions in a 3D blocks
world. We first introduce a new dataset that pairs complex 3D
spatial operations to rich natural language descriptions that
require complex spatial and pragmatic interpretations such
as “mirroring”, “twisting”, and “balancing”. This dataset,
built on the simulation environment of Bisk, Yuret, and Marcu
(2016), attains language that is significantly richer and more
complex, while also doubling the size of the original dataset
in the 2D environment with 100 new world configurations and
250,000 tokens. In addition, we propose a new neural archi-
tecture that achieves competitive results while automatically
discovering an inventory of interpretable spatial operations
(Figure 5).

Motivation

One of the longstanding challenges of AI, first introduced as
SHRDLU in early 70s (Winograd 1971), is to build an agent
that can follow natural language instructions in a physical
environment. The ultimate goal is to create systems that can
interact in the real world using rich natural language. How-
ever, due to the complex interdisciplinary nature of the chal-
lenge (Harnad 1990), which spans across several fields in
AI, including robotics, language, and vision, most existing
studies make varying degrees of simplifying assumptions.

On one end of the spectrum is rich robotics paired with
simple constrained language (Roy and Reiter 2005; Tellex
et al. 2011), as acquiring a large corpus of natural language
grounded with a real robot is prohibitively expensive (Misra
et al. 2014; Thomason et al. 2017). On the other end of the
spectrum are approaches based on simulation environments,
which support broader deployment at the cost of unrealistic
simplifying assumptions about the world (Bisk, Yuret, and
Marcu 2016; Wang, Liang, and Manning 2016). In this pa-
per, we seek to reduce the gap between two complementary
research efforts by introducing a new level of complexity to
both the environment and the language associated with the
interactions.

⇤Work performed at USC’s Information Sciences Institute.
Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

“On the (new) fourth tower, mirror Nvidia with UPS.”

)

Figure 1: Example language instruction in our new dataset.
The action requires fine-grained positioning and utilizes a
complex concept: mirror.

Lifting Grid Assumptions We find that language situated
in a richer world leads to richer language. One such example
is presented in Figure 1. To correctly place the UPS block,
the system must understand the complex physical, spatial,
and pragmatic meaning of language including: (1) the 3D
concept of a tower, (2) that new or fourth are referencing an
assumed future, and (3) that mirror implies an axis and re-
flection. However, concepts such as above are often outside
the scope of most existing language grounding systems.

In this work, we introduce a new dataset that allows for
learning significantly richer and more complex spatial lan-
guage than previously explored. Building on the simula-
tor provided by Bisk, Yuret, and Marcu (2016), we create
roughly 13,000 new crowdsourced instructions (9 per ac-
tion), nearly doubling the size of the original dataset in the
2D blocks world introduced in their previous work. We ad-
dress the challenge of realism in the simulated data by intro-
ducing three crucial but previously absent complexities:

1. 3D block structures (lifting 2D assumptions)
2. Fine-grained real valued locations (lifting grid assump-

tions)
3. Rotational, angled movements (lifting grid assumptions)

Learning Interpretable Operators In addition, we intro-
duce an interpretable neural model for learning spatial op-
erations in the rich 3D blocks world. In particular, in our
model instead of using a single layer conditioned on the lan-
guage for interpreting the operations, we have the model
choose which parameters to apply via a softmax over the
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Figure 3: Our target prediction model uses the sentence to produce distributions over operations and blocks (arguments). The
argument values illuminate regions of the world before the selected operation is applied. This final representation is used to
predict offsets in (x, y, z, ✓) space. In practice, two bi-LSTMs were used and the final vector contains rotation information.

t1 t2

McDonalds...
1 ...mirrors Twitter across the Y-axis.
2 ...to just over one space right of Twitter.
3 ...to the right of twitter with 1/2 block in between
4 ...the right side of twitter with a small space in between
5 ...as the bottom right square, parallel with Twitter,

but a little further than touching.
6 ...so it’s just to the right (not touching) the Twitter block.
7 ...1/3-block’s-length to the right of the Twtter block.
8 ...will move down and right until it is in the same row

as twitter with a small space between them
9 ...move it downwards enough to line up with the Twitter

logo, then move it left to be closer to the Twitter logo,
but not touching. The McDonald’s logo should appear
to be inbetween the boundaries of BurgerKing’s
left edge and SRI’s right edge.

Later in the same task, the agent will be asked to rotate a
block and place it between the two stacks. We present here
just a few excerpts wherein the same action is described in
five different ways.

t7 t8

1 Rotate SRI to the right ...
2 rotate it 45 degrees clockwise ...
3 only half of one rotation so its corners point

where its edges did ...
4 the logo faces the top right corner of the screen...
5 Spin SRI slightly to the right and then set it

in the middle of the 4 stacks

To complete these instructions requires understanding an-
gles, a new set of verbs (rotate, spin, ...), and references
to the block’s previous orientation. The final example, indi-

cates that a spin is necessary, but assumes the goal of having
it balance between the two stacks is sufficient information to
choose the right angle.

The world knowledge and concepts necessary to complete
this task are well beyond the ability of any systems we are
currently aware of or expect to be built in the near future.
Our goal is to provide data and an environment which more
accurately reflects the complexity of grounding language to
actions. Where previous work broadened the community’s
understanding of the types of natural language people use
by recreating a blocks world with real human annotators, we
felt they did not go far enough in really covering the space
of actions and therefore language naturally present in even
this constrained world.

Model

In addition to our dataset, we propose an end-to-end train-
able model that is both competitive in performance and has
an easily interpretable internal representation. The model
takes in a natural language instruction for block manipula-
tion and a 3D representation of the world as input, and out-
puts where the chosen block should be moved. The model
can be broken down into three primary components:

1. Language Encoding for Block and Operation prediction
2. Applying a spatial operation
3. Predicting a coordinate in space.

Our overall model architecture is shown in Figure 3. By
keeping the model modular we can both control the bottle-
necks that learning must use for representation and provide
ourselves post hoc access to interpretable scene and action
representations (explored further in interpretability section).
Without these, the model allows sentences and operations to
be represented by arbitrary N-dimensional vectors.

Language Encoder

As is common, we use bidirectional LSTMs (Hochreiter and
Schmidhuber 1997; Schuster and Paliwal 1997) to encode
the input sentence. We use two LSTMs: one for predicting
blocks to attend to, one for choosing the operations to ap-
ply. Both LSTMs share a vocabulary embedding matrix, but
have no other means of communication. We experimented

Source Target
Gold Source End-to-End

Acc. Mean Med Mean Med

Bisk 16 98 – – 0.98 0.0
Pišl 17 98.5 – – 0.72 –
Ours 97.5 0.7 0.14 0.80 0.14

v2 91.3 1.2 0.85 1.15 0.88

v1 + v2 95.9 1.0 0.50 1.10 0.51
v1 + v2 ! v1 98.1 0.8 0.15 0.84 0.15
v1 + v2 ! v2 93.1 1.2 0.88 1.35 0.91

Table 3: A comparison of our interpretable model with pre-
vious results (top) in addition to our performance on our new
corpus (v2). Finally, we show how training jointly on both
corpora has only a very moderate effect on performance, in-
dicating the complementarity of the data. Target values are
error measurements in block-lengths (lower is better).

Error Goal Instruction

4.8
use sri as the base of a fourth tower to the
left and equidistant with the other tower

5.2
spin sri slightly to the right and then set it
in the middle of the 4 stacks

6.4
in the emerging 3x3 grid place texaco in
the middle left

Table 4: Several of our worst performing results. Errors are
in block lengths, the images are the goal configuration, and
the instructions have been lowercased and tokenized.

(three degrees). In validation, 46% of predictions require
a rotation. 1,374 of 1491 predictions are within 2 degrees
of the correct orientation. The remainder have dramatically
larger errors (36 at 30�, 81 at 45�). This means that the
model is learning to interpret the scene and utterance cor-
rectly in the vast majority of cases.

Error Analysis

Several of our model’s worst performing examples are in-
cluded in Table 4. The model’s error is presented alongside
the goal configuration and misunderstood instruction.

The first example specifies the goal location using an ab-
stract concept (tower) and the offset (equidistant) implies
recognition of a larger pattern. The second example speci-
fies the goal location in terms of “the 4 stacks”, again with-
out naming any of them and in 3D. Finally, the third demon-
strates a particularly nice phenomenon in human language
where a plan is specified, the speaker provides categoriz-
ing information to enable its recognition, and then can use
this newly defined concept as a referent. No models to our

place the block that is to the right of the stella block as the highest
block on the board. it should be in line with the bottom block .

Table 5: Example utterance which requires both understand-
ing that highest is a 3D concept, and inferring that the 2D
concept of a line has been rotated to be in the z-dimension.

knowledge have the ability to dynamically form new con-
cepts in this manner.

Rotations Despite a strong performance by the model on
rotations, there are a number of cases that were completely
overlooked. Upon inspection, these appear to be predomi-
nantly cases where the rotation is not explicitly mentioned,
but instead assumed or implied:
• place toyota on top of sri in the same direction .
• take toyota and place it on top of sri .
• ... making part of the inside of the curve of the circle .
The first two should be the focus of immediate future work
as they only require trusting that a new block should trust
the orientation of an existing one below it unless there is a
compelling reason (e.g. balance) to rotate it. The third case,
returns to our larger discussion on understanding geometric
shapes and is probably out of scope for most approaches.

Conclusions

This work presents a new model which moves beyond sim-
ple spatial offset predictions (+x, +y, +z) to learn functions
which can be applied to the scene. We achieve this without
losing interpretability. In addition, we introduce a new cor-
pus of 10,000 actions and 250,000 tokens which contains a
plethora of new concepts (subtle movements, balance, rota-
tion) to advance research in action understanding.
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Goal:  Grounding Spatial Relations
Domain:  3D block configurations and annotated instructions.

Instruction:

Transition:

t16 t17

Component tasks
Grounding referents

Spatial relations

Scene understanding

Abstract Language

Evaluation
L2 in R3

radians for angle

Did we correctly place and/or rotate the block?

Nine annotations per action collected from Mechanical Turk.  The linguistic difficulty of spatial reasoning varies dramatically.

The model must both cluster the language into arguments and operations, while 

jointly learning those operations.  Operations are randomly initialized 1x1 convolutions

Visualizing Interpretable Operations
After training, each embedding Mop can be 
visualized by multiplying by a one-hot dop 
and applying the convolution to a single 
block moved around the image.  We 
visualize four embeddings here (all 32 are 
presented in the paper).
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ing that highest is a 3D concept, and inferring that the 2D
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cepts in this manner.

Rotations Despite a strong performance by the model on
rotations, there are a number of cases that were completely
overlooked. Upon inspection, these appear to be predomi-
nantly cases where the rotation is not explicitly mentioned,
but instead assumed or implied:
• place toyota on top of sri in the same direction .
• take toyota and place it on top of sri .
• ... making part of the inside of the curve of the circle .
The first two should be the focus of immediate future work
as they only require trusting that a new block should trust
the orientation of an existing one below it unless there is a
compelling reason (e.g. balance) to rotate it. The third case,
returns to our larger discussion on understanding geometric
shapes and is probably out of scope for most approaches.

Conclusions

This work presents a new model which moves beyond sim-
ple spatial offset predictions (+x, +y, +z) to learn functions
which can be applied to the scene. We achieve this without
losing interpretability. In addition, we introduce a new cor-
pus of 10,000 actions and 250,000 tokens which contains a
plethora of new concepts (subtle movements, balance, rota-
tion) to advance research in action understanding.
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in the emerging 3x3 grid place 

texaco in the middle left

Previous:  left, up, right, directly, above, until, corner, top, down, below, bottom, slide, space, between, …

This work:  degrees, rotate, clockwise, covering, 45, layer, mirror, arch, towers, equally, twist, balance, … 

We introduce new concepts and complicate previous ones by having humans perform all actions in R3 

We report our average

error in block-lengths,

on the previous 

simplified data, our 
new data and the joint.

Configs Types Tokens Ave Len
Previous 100 1,281 258K
 15.4
This 100 1,820 233K 18.0
Joint 200 2,299 491K 16.5

Data statistics


