
Unsupervised Neural
Hidden Markov Models

Ke Tran1, Yonatan Bisk, Ashish Vaswani2,
Daniel Marcu and Kevin Knight
USC Information Sciences Institute
1Univ of Amsterdam, 2Google Brain

I am not Ke Tran

Unsupervised Learning Linguistic Structure

with Deep Neural Networks

Ke Tran Yonatan Bisk Ashish Vaswani Kevin Knight Daniel Marcu

https://github.com/ketranm/neuralHMM

https://github.com/ketranm/neuralHMM

Bayesian Models

• HMMs, CFGs, … have been standard workhorses
of the NLP community

• Generative models lend themselves to
unsupervised estimation

• Bayesian models have elegant, but often very
parametrically expensive smoothing approaches

+

+

-

Why Neuralize
Bayesian Models?

• Unsupervised structure learning

• Simple modular extensions

• Embeddings and vector representations have been
shown to generalize well.

+

+

+

This is a nice direction

Online Segment to Segment Neural Transduction.
Lei Yu, Jan Buys, and Phil Blunsom.

Unsupervised Neural Dependency Parsing.
Yong Jiang, Wenjuan Han, and Kewei Tu.

Relevant EMNLP 2016 Papers:

Hidden Markov Models

Probabilistic Graphical Models + Deep Nets

xtxt�1 xt+1 xNx1

z1 zt�1 zt zt+1 zN
Well-developed, well understood

We know how to do efficient learning/inference
with GMs for most of NLP problems

Neural Networks

Graphical Models

Expressive

Great for compositionality

encoder-decoder

linear-chain model

Given an observed sequence of text:
x

p(xt|zt)⇥ P (zt|zt�1)Probability of a given token:

z1 zt�1 zt+1 zTzt

xt xt+1xt�1x1 xT

Figure 1: Pictorial representation of a Hidden Markov Model.
Latent variable (zt) transitions depend on the previous value
(zt�1), and emit an observed word (xt) at each time step.

3.1 The Hidden Markov Model
A common model for this task, and our primary
workhorse, is the Hidden Markov Model trained with
the unsupervised message passing algorithm, Baum-
Welch (Welch, 2003).

Model HMMs model a sentence by assuming that
(a) every word token is generated by a latent class,
and (b) the current class at time t is conditioned on
the local history t�1. Formally, this gives us an emis-
sion p(xt | zt) and transition p(zt | zt�1) probability.
The graphical model is drawn pictorially in Figure 1,
where shaded circles denote observations and empty
ones are latent. The probability of a given sequence
of observations x and latent variables z is given by
multiplying transitions and emissions across all time
steps (Eq. 6). Finding the optimal sequence of latent
classes corresponds to computing an argmax over the
values of z.

p(x, z) =
n+1Y

t=1

p(zt | zt�1)
nY

t=1

p(xt | zt) (6)

Because our task is unsupervised we do not have
a priori access to these distributions, but they can be
estimated via Baum-Welch. The algorithm’s outline
is provided in Algorithm 1.

Training an HMM with EM is highly non-convex
and likely to get stuck in local optima (Johnson,
2007). Despite this, sophisticated Bayesian smooth-
ing leads to state-of-the-art performance (Blunsom
and Cohn, 2011). Blunsom and Cohn (2011) fur-
ther extend the HMM by augmenting its emission
distributions with character models to capture mor-
phological information and a tri-gram transition ma-
trix which conditions on the previous two states. Re-
cently, Lin et al. (2015) extended several models

Algorithm 1 Baum-Welch Algorithm
Randomly Initialize distributions (✓)
repeat

Compute forward messages: 8i,t ↵i(t)
Compute backward messages: 8i,t �i(t)
Compute posteriors:

p(zt = i |x, ✓) / ↵i(t)�i(t)
p(zt = i, zt+1 = j |x, ✓)

/ ↵i(t)p(zt+1=j|zt= i)
⇥�j(t + 1)p(xt+1|zt+1=j)

Update ✓

until Converged

including the HMM to include pre-trained word em-
beddings learned by different skip-gram models. Our
work will fully neuralize the HMM and learn embed-
dings during the training of our generative model.
There has also been recent work on by Rastogi et al.
(2016) on neuralizing Finite-State Transducers.

3.2 Additional Comparisons
While the main focus of our paper is the seamless
extension of an unsupervised generative latent vari-
able model with neural networks, for completeness
we will also include comparisons to other techniques
which do not adhere to the generative assumption.
We include Brown clusters (Brown et al., 1992) as
a baseline and two clustering techniques as state-
of-the-art comparisons: Christodoulopoulos et al.
(2011) and Yatbaz et al. (2012).

Of particular interest to us is the work of Brown
et al. (1992). Brown clusters group word types
through a greedy agglomerative clustering according
to their mutual information across the corpus based
on bigram probabilities. Brown clusters do not ac-
count for a word’s membership in multiple syntactic
classes, but are a very strong baseline for tag induc-
tion. It is possible our approach could be improved
by augmenting our objective function to include mu-
tual information computations or a bias towards a
harder clustering.

4 Neural HMM

The aforementioned training of an HMM assumes ac-
cess to two distributions: (1) Emissions with K ⇥ V

parameters, and (2) Transitions with K ⇥K parame-
ters. Here we assume there are K clusters and V

Supervised POS Tagging
The orange man will lose the election

DT JJ NN MD VB DT NN

Goal: Predict the correct class for each word in the sentence
Solution: Count and divide

p(orange|JJ) = |orange, JJ|
|JJ| p(JJ|DT) = |DT, JJ|

|DT|

K ⇥KV ⇥KParameters:

Simple Supervised
Neural HMM

The orange man will lose the election

DT JJ NN MD VB DT NN

Replace parameter matrices with NNs + Softmax
Train with Cross Entropy

JJ orange

Emission Network

DT JJ

Transition Network

Unsupervised Neural HMM

The orange man will lose the election

? ? ? ? ? ? ?

? orange

Emission Network

? ?

Transition Network

Bayesian POS Tag Induction

The orange man will lose the election

C1 C2 C4 C14 C12 C1 C4

Goal: Discover the set of classes which best model
the observed data.

Solution: Baum-Welch

Posteriors

p(zt = i|x)

Probability of a specific cluster assignment

Probability of a specific cluster transition
p(zt = i, zt+1 = j|x)

Bayesian update: Count and Divide

Count and Divide

0.3

0.1

0.2

0.4

p(wi|Cj)

Initialize

50

2

4

35
X

corpus

p(wi, Cj)

Compute
Posteriors Normalize

0.55

0.02

0.04

0.38

p̂(wi|Cj)

Unsupervised Neural HMM

The orange man will lose the election

? ? ? ? ? ? ?

orange

Emission Network Transition Network

zt

p(zt = i|x)

zt zt+1

p(zt = i, zt+1 = j|x)

Generalized EM

E-Step Compute Surrogate q

M-Step Maximize Expectation

ln p(x|✓) =

Eq(z)[ln p(x, z|✓)] + H[q(z)] + KL[q(z)||p(z|x, ✓)]

What is the gradient?
Set q(z) = p(z|x, ✓)

J(✓) =
X

z

p(z|x)@lnp(x, z|✓)
@✓

Eq(z)[ln p(x, z|✓)] + H[q(z)] + KL[q(z)||p(z|x, ✓)]

0

Eq(z)[ln p(x, z|✓)] + H[q(z)]

0

Take Derivative w.r.t. ✓

Jas
on

 Ei
sne

r p
rob

ab
ly

ha
s s

om
eth

ing
 to

 sa
y h

ere

Initial Evaluation

Induction Metrics
• 1-1: Bijection between induced and gold classes

• M-1: Map induced class to its closest gold class

• V-M: Harmonic mean of H(c,g) and H(g,c)

Higher numbers are better

Evaluation

1-1 M-1 V-M

HMM 41.4 62.5 53.3

Neural HMM 45.7 59.8 54.2

The neural model has access to no additional information

Morphology
Incorporating Morphology

State
embeddings

ReLU

Char-CNN

SoftMax

Emission Matrix

V

kernels = {1,2,3,4,5,6,7}

feature_maps =
{50, 100, 128, 128, 128, 128, 128}

Char-CNN

CNN based embeddings
provide morphological
information

Evaluation

1-1 M-1 V-M

HMM 41.4 62.5 53.3

Neural HMM 45.7 59.8 54.2

+ Conv 48.3 74.1 66.1

Extended Context

Bi-gram transition p(zt|zt�1)

p(zt|zt�1, zt�2)Tri-gram transition
p(zt|zt�1, zt�2, ..., zt�n)N-gram transition

Traditional:

Alternative:

K2

K3

Kn+1

p(zt|zt�1, xt�1)Previous tag and word V ⇥K2

p(zt|zt�1, xt�1, ..., x0)Previous tag and sentence V t ⇥K2

LSTM Context

Tag embeddings

ReLU

Linear

Softmax

Char-CNN

Figure 2: Computational graph of Char-CNN emission network.
A character convolutional neural network is used to compute the
weight of the linear layer for every minibatch.

following two sections will demonstrate the extensi-
bility of this approach.

5 Convolutions for Morphology

The first benefit of moving to neural networks is the
ease with which new information can be provided
to the model. The first experiment we will perform
is replacing words with embedding vectors derived
from a Convolutional Neural Network (CNN) (Kim
et al., 2016; Jozefowicz et al., 2016). We use a convo-
lutional kernel with widths from 1 to 7, which covers
up to 7 character n-grams (Figure 2). This allows the
model to automatically learn lexical representations
based on prefix, suffix, and stem information about a
word. No additional changes to learning are required
for extension.

Adding the convolution does not dramatically
slow down our model because the emission distribu-
tions can be computed for the whole batch in one
operation. We simply pass the whole vocabulary
through the convolution in a single operation.

6 Infinite Context with LSTMs

One of the most powerful strengths of neural net-
works is their ability to create compact representa-
tion of data. We will explore this here in the creation
of transition matrices. In particular, we chose to aug-
ment the transition matrix with all preceding words
in the sentence: p(zt | zt�1, w0, . . . , wt�1). Incorpo-
rating this amount of context in a traditional HMM is
intractable and impossible to estimate, as the number
of parameters grows exponentially.

For this reason, we use an stacked LSTM
to form a low dimensional representation of the
sentence (C0...t�1) which can be easily fed to
our network when producing a transition matrix:

xtxt�1x1 xT

Tt�1,t

Figure 3: A graphical representation of our LSTM transition
network. Transition matrix Tt�1,t from time step t � 1 to t is
computed based on the hidden state of the LSTM at time t� 1.

p(zt | zt�1, C0...t�1) in Figure 3. By having the
LSTM only consume up to the previous word, we do
not break any sequential generative model assump-
tions.1 In terms of model architecture, the query em-
bedding q will be replaced by a hidden state ht�1 of
the LSTM at time step t � 1.

7 Evaluation

Once a model is trained, the one best latent sequence
is extracted for every sentence and evaluated on three
metrics.

Many-to-One (M-1) Many-to-one computes the
most common true part-of-speech tag for each clus-
ter. It then computes tagging accuracy as if the clus-
ter were replaced with that tag. This metric is easily
gamed by introducing a large number of clusters.

One-to-One (1-1) One-to-One performs the same
computation as Many-to-One but only one cluster is
allowed to be assigned to a given tag. This prevents
the gaming of M-1.

V-Measure (VM) V-Measure is an F-measure
which trades off conditional entropy between the
clusters and gold tags. Christodoulopoulos et al.
(2010) found VM is to be the most informative and
consistent metric, in part because it is agnostic to the
number of induced tags.

8 Data and Parameters

To evaluate our approaches, we follow the existing
literature and train and test on the full WSJ corpus.

1This interpretation does not complicate the computation
of forward-backward messages when running Baum-Welch,
though it does, by design, break Markovian assumption about
knowledge of the past.

LSTM consumes the sentence
and produces a transition matrix

p(zt|zt�1, xt�1, ..., x0)

Evaluation
1-1 M-1 V-M

 HMM 41.4 62.5 53.3

Neural HMM 45.7 59.8 54.2

 + Conv 48.3 74.1 66.1

 + LSTM 52.4 65.1 60.4

 + Conv & LSTM 60.7 79.1 71.7

Blunsom 2011 77.4 69.8

Yatbaz 2012 80.2 72.1

Types / Cluster

0

3,500

7,000

10,500

14,000

Gold LSTM FF Conv Conv+LSTM

Clusterings
Largest Cluster

of
in
to
for
on
from

LSTM
years
trading
sales
president
companies
prices

Conv

Numbers

%
million
year
share
cents
1/2

LSTM
million
billion
cents
points
point
trillion

Conv

What’s a good clustering?

American
British
National
Congress
Japan
San
Federal
West
Dow

Corp.
Inc.
Co.
Board
Group
Bank
Inc
Bush
Department

C25C15

NNP

Future Work

• Harnessing Extra Data

• Modifying the objective function

• Multilingual experiments

• Using this approach with other generative models

Thanks!

https://github.com/ketranm/neuralHMM

Parameter Initialization, Tricks, Ablation
in paper and in Github README

