

Unsupervised Neural Hidden Markov Models

Ke Tran¹, **Yonatan Bisk**, Ashish Vaswani², Daniel Marcu and Kevin Knight USC Information Sciences Institute ¹Univ of Amsterdam, ²Google Brain

I am not Ke Tran

https://github.com/ketranm/neuralHMM

Bayesian Models

- HMMs, CFGs, ... have been standard workhorses of the NLP community
- Generative models lend themselves to unsupervised estimation
- Bayesian models have elegant, but often very parametrically expensive smoothing approaches

Why Neuralize Bayesian Models?

- Unsupervised structure learning
- Simple modular extensions
- Embeddings and vector representations have been shown to generalize well.

This is a nice direction

Relevant EMNLP 2016 Papers:

Online Segment to Segment Neural Transduction. Lei Yu, Jan Buys, and Phil Blunsom.

Unsupervised Neural Dependency Parsing. Yong Jiang, Wenjuan Han, and Kewei Tu.

Hidden Markov Models

Given an observed sequence of text: ${\mathcal X}$

Probability of a given token: $p(x_t|z_t) \times P(z_t|z_{t-1})$

$$p(\mathbf{x}, \mathbf{z}) = \prod_{t=1}^{n+1} p(z_t \mid z_{t-1}) \prod_{t=1}^n p(x_t \mid z_t)$$

Supervised POS Tagging

The	orange	man	will	lose	the	election
DT	JJ	NN	MD	VB	DT	NN

Goal: Predict the correct class for each word in the sentence Solution: Count and divide

$$p(\text{orange}|JJ) = \frac{|\text{orange}, JJ|}{|JJ|} \qquad p(JJ|DT) = \frac{|DT, JJ|}{|DT|}$$
Parameters: $V \times K$ $K \times K$

 $K \times K$

Simple Supervised Neural HMM

The	orange	man	will	lose	the	election
DT	JJ	NN	MD	VB	DT	NN

Replace parameter matrices with NNs + Softmax Train with Cross Entropy

Unsupervised Neural HMM

The	orange	man	will	lose	the	election
?	?	?	?	?	?	?

Bayesian POS Tag Induction

The	orange	man	will	lose	the	election
C_1	C ₂	C ₄	C ₁₄	C ₁₂	C_1	C ₄

Goal: Discover the set of classes which best model the observed data.

Solution: Baum-Welch

Posteriors

Probability of a specific cluster assignment $p(z_t = i | \mathbf{x})$

Probability of a specific cluster transition

$$p(z_t = i, z_{t+1} = j | \mathbf{x})$$

Bayesian update: Count and Divide

Unsupervised Neural HMM

The	orange	man	will	lose	the	election
?	?	?	?	?	?	?

 $z_t \rightarrow \overrightarrow{z_{t+1}}$ $p(z_t = i, z_{t+1} = j | \mathbf{x})$

Emission Network

Transition Network

Generalized EM

 $\ln p(\mathbf{x}|\theta) =$

 $\mathbb{E}_{q(\mathbf{z})}[\ln p(\mathbf{x}, \mathbf{z}|\theta)] + \mathrm{H}[q(\mathbf{z})] + \mathrm{KL}[q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta)]$

E-Step Compute Surrogate qM-Step Maximize Expectation

What is the gradient?
Set
$$q(\mathbf{z}) = p(\mathbf{z}|\mathbf{x}, \theta)$$

 $\mathbb{E}_{q(\mathbf{z})}[\ln p(\mathbf{x}, \mathbf{z}|\theta)] + H[q(\mathbf{z})] + KL[q(\mathbf{z})||p(\mathbf{z}|\mathbf{x}, \theta)]$
Take Derivative w.r.t. θ
 $\mathbb{E}_{q(\mathbf{z})}[\ln p(\mathbf{x}, \mathbf{z}|\theta)] + H[q(\mathbf{z})]$
 0
 $J(\theta) = \sum_{\mathbf{z}} p(\mathbf{z}|\mathbf{x}) \frac{\partial \ln p(\mathbf{x}, \mathbf{z}|\theta)}{\partial \theta}$
 $\sum_{\mathbf{x} \in \mathbf{z} \in \mathbf{z}} p(\mathbf{z}|\mathbf{x}) \frac{\partial \ln p(\mathbf{x}, \mathbf{z}|\theta)}{\partial \theta}$

Initial Evaluation

Induction Metrics

- 1-1: Bijection between induced and gold classes
- M-1: Map induced class to its closest gold class
- V-M: Harmonic mean of H(c,g) and H(g,c)

Higher numbers are better

Evaluation

	1-1	M-1	V-M
HMM	41.4	62.5	53.3
Neural HMM	45.7	59.8	54.2

The neural model has access to no additional information

Morphology

Evaluation

+ Conv	48.3	74.1	66.1
Neural HMM	45.7	59.8	54.2
HMM	41.4	62.5	53.3
	1-1	M-1	V-M

Extended Context

Traditional:

Bi-gram transition

Tri-gram transition

N-gram transition

$$p(z_t|z_{t-1}) K^2$$

$$p(z_t|z_{t-1}, z_{t-2})$$
 K^3

$$p(z_t|z_{t-1}, z_{t-2}, ..., z_{t-n}) \qquad K^{n+1}$$

Alternative:

Previous tag and word $p(z_t|z_{t-1}, x_{t-1})$ $V \times K^2$ Previous tag and sentence $p(z_t|z_{t-1}, x_{t-1}, ..., x_0)$ $V^t \times K^2$

LSTM Context

LSTM consumes the sentence and produces a transition matrix

Evaluation

	1-1	M-1	V-M
HMM	41.4	62.5	53.3
Neural HMM	45.7	59.8	54.2
+ Conv	48.3	74.1	66.1
+ LSTM	52.4	65.1	60.4
+ Conv & LSTM	60.7	79.1	71.7
Blunsom 2011		77.4	69.8
Yatbaz 2012		80.2	72.1

Clusterings

Largest Cluster

Numbers

LSTM	Conv	LSTM	Conv
of	vears	%	million
in	trading	million	billion
to	sales	year	cents
for	president	share	points
on	companies	cents	point
from	prices	1/2	trillion

What's a good clustering?

NNP

 C_{15} American British National Congress Japan San Federal West Dow

 C_{25} Corp. Inc. Co. Board Group Bank Inc Bush Department

Future Work

- Harnessing Extra Data
- Modifying the objective function
- Multilingual experiments
- Using this approach with other generative models

Thanks!

https://github.com/ketranm/neuralHMM

Parameter Initialization, Tricks, Ablation in paper and in Github README