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ABSTRACT
Topic taxonomies present a multi-level view of a document collec-
tion, where general topics live towards the top of the taxonomy and
more specific topics live towards the bottom. Topic taxonomies al-
low users to quickly drill down into their topic of interest to find
documents. We show that hierarchies of documents, where doc-
uments live at the inner nodes of the hierarchy-tree can also be
inferred by combining document text with inter-document links.
We present a Bayesian generative model by which an explicit hi-
erarchy of documents is created. Experiments on three document-
graph data sets shows that the generated document hierarchies are
able to fit the observed data, and that the levels in the constructed
document hierarchy represent practical groupings.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; G.3 [Probability and Statis-
tics]: Probabilistic algorithms, Nonparametric statistics

General Terms
Algorithms, Experimentation

Keywords
hierarchical clustering, Bayesian generative models, topic models,
model evaluation

1. INTRODUCTION
As the number of online resources and Web documents continues

to increase, the need for better organizational structures that guide
readers towards the information they seek increases. Hierarchies
and taxonomies are invaluable tools for this purpose. Taxonomies
are widely used in libraries via the Library of Congress System
or the Dewey Decimal System, and hierarchies were a fixture of
the early World Wide Web; perhaps the most famous example be-
ing the Yahoo search engine, which is actually an acronym for Yet
Another Hierarchical Officious Oracle. These hierarchical systems
were developed because their effectiveness at topical organization
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and their logarithmic depth allowed users to quickly find the rele-
vant documents they were searching for.

Unfortunately, taxonomy curation of documents, articles, books,
etc. is mostly a manual process, which is only possible when the
number of curated documents is relatively small. This process
becomes increasingly impractical when the number of documents
grows to Web-scale. This has motivated research towards automat-
ically inducing document taxonomies from the data [1, 4, 14, 5, 6,
19]. Most of the existing techniques rely on a single type of data
– usually text. The problem with text-only hierarchy induction is
that words often have multiple meanings. For example, the words
“worm” and “bug” have very different meanings in the contexts of
biology and computer science. Therefore without proper context
proper taxonomy induction can be difficult.

Most document repositories contain linkages between the docu-
ment creating a document-graph. These links provide proper con-
text to the terms in each document. Document-graphs are espe-
cially common in nonfiction and scientific literature, where cita-
tions are viewed as inter-document links. The World Wide Web
can be considered to be a single, very large document-graph, where
Web pages represent documents and hyperlinks link documents.

Web sites, in particular, are a collection of documents with a very
specific and purposeful organizational structure. Web sites are of-
ten specifically designed to guide the user from the entry page, i.e.,
homepage, to progressively more specific Web pages. Similarly,
scientific literature can be categorized into a hierarchy of increas-
ingly specific scientific topics by their citation links, and encyclo-
pedia articles can be categorized into a hierarchy of increasingly
specific articles by their cross references. Thus, we assert that most
document-graphs contain a hidden document hierarchy.

In this paper we draw a specific distinction between a hierarchy
and a taxonomy. We define a taxonomy to be a classification of ob-
jects into increasingly finer granularities, where each non-leaf node
is a conceptual combination its children. A biological taxonomy is
a great example of this definition because a classified species, say
homo sapiens (i.e., humans), can only be placed at a leaf in the
taxonomy; the inner nodes, e.g., primate, mammal, animal, do not
declare new species, rather they are conceptual agglomerations of
species. Furthermore, each species is described by its path through
the taxonomy. For example, homo sapiens, can be described as
primates, as mammals and as animals (among others). A hierar-
chy, on the other hand, is an arrangement of objects where some
objects are considered to be above, below or at the same level as
others. This necessarily means that objects of a hierarchy live at
the internal nodes.

Strictly speaking, most existing models infer taxonomies. The
goal of this paper is to construct document hierarchies from a docu-
ment-graph using document text and inter-document links. For



these purposes above, below or at the same level as refers to the
topical granularity of the documents. In other words, given a doc-
ument graph with an explicitly identified root, such as a Web site
homepage, we aim to learn a document-hierarchy which best cap-
tures the conceptual hierarchy of the document-graph. This prob-
lem poses three technical challenges:

1. Inducing document topic mixtures. We propose learning
a document hierarchy where the internal (non-leaf) nodes
of the hierarchy are documents. In such a hierarchy, parent
documents consist of topics that are more general than their
children. This requires that we view a parent document as a
mixture of the topics contained within its children, and chil-
dren documents should topically fit underneath their selected
parent. We present the Hierarchical Document-Topic Model
(HDTM) which generates a course-to-fine representation of
the text information, wherein high-level documents live near
the top of the hierarchy, and low-level, more specific docu-
ments live at the leaves.

2. Selecting document placement. Placement of a document
within the hierarchy drives the topic mixing. Because links
between edges hint at the context of and relationship between
documents, we constrain the document placement in the in-
duced hierarchy by their edges within the original document-
graph. In other words, if an edge exists in the induced hi-
erarchy, then it must also exist in original document-graph.
Unlike existing models, such as hLDA [3], that select topic
paths using the nested Chinese Restaurant Process (nCRP),
we perform document placement based on a stochastic pro-
cess resembling random walks with restart (RWR) over the
original document-graph. The use of a stochastic process
over the document-graph frees the algorithm from rigid pa-
rameters. Furthermore, the adoption of RWR stochastic pro-
cess over nCRP allows documents to live at non-leaf nodes,
and frees the algorithm from the depth parameter of hLDA.

3. Analysis at Web site-scale. In most document-graph col-
lections, the number of edges grows quadratically with the
number of nodes. This limits the scalability of many topic
diffusion algorithms [20, 10]. Fortunately, document hierar-
chies are represented as trees, wherein the number of edges
scales linearly with the number of documents.

The remainder of this paper is organized as follows. In Sec-
tion 2 we review the related literature with specific attention paid
to distinctions between similar generative models. In Section 3 we
discuss the intuition behind hierarchy induction from document-
graphs. Our proposed model is described in Section 4. In Section
5 we perform quantitative experiments on three data sets, as well as
a large qualitative exploration based on thousands of human judg-
ments. We find that our model constructs document hierarchies that
are coherent with respect to their textual topics and conform to the
graphical representation of the underlying document-graph.

2. RELATED WORK
There has been a substantial amount of previous work on hier-

archical clustering of documents. The first approaches were called
agglomerative clustering, which used greedy heuristics such as single-
link or complete-link [29]. Dendrograms are often the output of
such clustering techniques, in which the root node is split into a
series of branches that terminate with a single document at each
leaf. Ho, et al., point out that manually-curated hierarchies like

the Open Directory Project1 are typically flatter and contain fewer
inner nodes than agglomerative clustering techniques produce [14].
Other hierarchical clustering algorithms include top-down processes
which iteratively partition the data [31], incremental methods like
COBWEB [9], CLASSIT [11], and other algorithms optimized for
hierarchical text clustering.

The processes that typically define most hierarchical clustering
algorithms can be made to fit in a probabilistic setting that build
bottom-up hierarchies based on Bayesian hypothesis testing [13].
On the other hand, most recent work uses Bayesian generative mod-
els to find the most likely explanation of observed text and links.
The first of these hierarchical generative models was hierarchical
latent Dirichlet allocation (hLDA). In hLDA each document sits at
a leaf in a tree of fixed depth as illustrated in Figure 1(a). The doc-
ument is represented by a mixture of multinomials along the path
through the tree from the document to the root. Documents are
placed at their respective leaf nodes by the nested Chinese restau-
rant process (nCRP).

NCRP is a recursive version of the standard Chinese Restaurant
Process (CRP), which progresses according to the following anal-
ogy: An empty Chinese restaurant has an infinite number of tables,
and each table has an infinite number of chairs. When the first cus-
tomer arrives he sits in the first chair at the first table with probabil-
ity of 1. The second customer can then chose to sit at an occupied
table with probability of ni

γ+n−1
or sit at a new, unoccupied table

with probability of γ
γ+n−1

, where n is the current customer, ni is
the number of customers currently sitting at table i, and γ is a pa-
rameter that defines the affinity to sit at a previously occupied table
following a rich get richer scheme.

The nested version of the CRP extends the original analogy as
follows: At each table in the Chinese restaurant are cards with the
name of another Chinese restaurant. When a customer sits at a
given table, he reads the card, gets up and goes to that restaurant,
where he is reseated according to the CRP. Each customer visits
L restaurants until he is finally seated and is able to each. This
process creates a stochastic tree with a width determined by the γ
parameter of a fixed depth L. This process has also been called the
Chinese Restaurant Franchise because of this analogy [4].

Adams, et al. proposed a hierarchical topic model called tree
structured stick breaking (TSSB), illustrated in Figure 1(c), wherein
documents can live at internal nodes, rather than exclusively at leaf
nodes. However, this process involves chaining together conjugate
priors which makes inference more complicated, and it also does
not make use of link data.

Other work along this line include hierarchical labeled LDA (hL-
LDA) by Petinot et al. [22] hLLDA, as well as fixed structure
LDA (fsLDA) by Reisinger and Pasca [25] which modify hLDA
by fixing the hierarchical structure and learning hierarchical topic
distributions. The hierarchical pachinko allocation model(hPAM),
shown in Figure 1(b), produces a directed acyclic graph (DAG) of
a fixed depth allowing for each internal (non-document) node to
be represented a mixture of more abstract, i.e., higher level, top-
ics [19].

In network-only data, community discovery is the process of
finding self-similar group, or clusters. The SHRINK algorithm
creates hierarchical clusters by identifying tightly-knit communi-
ties and by finding disparate clusters by looking for hubs and other
heuristics [16]. The focus of this paper is more on probabilistic
models to generate hierarchies, rather than heuristic approaches.
Clauset, et al, discover dendrograms by Monte Carlo sampling;

1http://www.dmoz.org
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Figure 1: Generative structures in related work. Circles and squares represent topics and documents respectively. Each topic has a
multinomial over words (gray boxes), and a separate distribution over levels for each path (white triangles).

however, dendrograms poorly represent the manually curated hi-
erarchies and taxonomies that we are pursuing [7].

In this paper we merge document text and inter-document links
into a single model. This assumes that the words and their latent
topics fit within the link structure of the graph, and that the graph
structure explains topical relationships between interlinked docu-
ments. Topic Modeling with Network Structure (TMN), regular-
izes a statistical topic model with a harmonic regularizer based on
the graph structure in the data; the result is that topic proportions
of linked documents are similar to each other [18]. However, hi-
erarchical information is not discovered nor can be easily inferred
from this model.

Other work on generative models that combine text and links
include: a probabilistic model for document connectivity [8], the
Link-PLSA-LDA and Pairwise-Link-LDA methods [21], the La-
tent Topic Model for Hypertext (LTHM) method [12], role discov-
ery in social networks [17], the author-topic-model [26], and oth-
ers. The above models operate by encoding link probability as a
discrete random variable or a Bernoulli trial that is parameterized
by the topics of the documents. The relational topic model (RTM)
builds links between topics, where observed links are given a very
high likelihood [6]; although the paper is titled hierarchical rela-
tional models for topical networks, the RTM model does not build
a topic or document hierarchy. The TopicBlock model combines
the non-parametric hLDA and stochastic block models [15] to gen-
erate document taxonomies from text and links [14]; however, Top-
icBlock does not permit documents to reside at non-leaf nodes of
the tree hierarchy.

In contrast to the previous work, our model builds a hierarchy of
documents from text and inter-document links. In our model, each
node in the hierarchy contains a single document, and the hierar-
chy’s width and depth is not fixed.

3. HIERARCHIES OF DOCUMENTS
In the previous work, document hierarchies were not actually

hierarchies of documents in the literal sense. Instead, leaf nodes
of the hierarchy contains the actual, literal documents, and inter-
nal nodes contained increasingly more general topics about the an-
cestor documents. See Figure 1 for a brief comparison of model
outputs. In this paper we require inner nodes, which in previous
work are made of word multinomial distributions, to be literal doc-
uments. This requires an assertion that some documents are more
general than others. This section explores this assertion through
examples and a review of similar assertions made in previous re-
search.

3.1 Web sites as document hierarchies
A Web site G can be viewed as a directed graph with Web pages

as vertices V and hyperlinks as directed edges E between Web
pages vx → vy – excluding inter-site hyperlinks. In most cases,
designating Web site entry page as the root r allows for a Web site
to be viewed as a rooted directed graph. Web site creators and cu-
rators purposefully organize the hyperlinks between documents in
a topically meaningful manner. As a result, Web documents further
away from the root document typically contain more specific topics
than Web documents graphically close to the root document.

For example, the Web site at the University of Illinois in Urbana-
Champaign, shown in Figure 2 contains a root Web document (the
entry page), and dozens of children Web documents. Even with a
very small subset of documents and edges, the corresponding Web
graph is quite complicated and messy. A breadth first traversal of
the Web graph starting with the root node is a simple way to distill
a document hierarchy from the Web graph. Unfortunately, we shall
see that a fixed breadth-first hierarchy cannot account for many of
the intricacies of real world Web graphs.

For explanation purposes we define four types of hyperlink edges
in a Web site: (1) parent-to-child links, (2) upward links, (3) short-
cuts, and (4) cross-topic links. Parent-to-child links direct the user
from one Web page to a more topically specific Web page; e.g., a
hyperlink from ../engineering to cs.illinois.edu is a parent-
to-child hyperlink because computer science is topically more spe-
cific than engineering. Upward links are hyperlinks that reference
a more general document; e.g., there may exist a hyperlink from
cs.illinois.edu to illinois.edu because the computer sci-
ence department would like to reference the fact that it belongs to
the university. Shortcut links are hyperlinks that skip from very
general Web documents to very specific Web documents as a way
of featuring some specific topic; e.g., if a computer science profes-
sor wins a prestigious award or grant, his Web page may be linked
to from the news section of the root Web page. Cross topic links
are hyperlinks that move across topical subtrees; e.g., the college of
media may reference some working relationship with the athletic
department by creating a hyperlink between the two Web pages.

Because our goal is to infer the document hierarchy, we are, in
a sense, trying to find parent-to-child links. In the event that there
is more than one parent-to-child link to a particular Web page, our
goal is to find the best topical fit for each Web document in the
inferred hierarchy.

Web researchers and practitioners have used the hyperlink struc-
ture to organize Web documents for many years. The PageRank
and HITS algorithms are two of the most famous examples of in-
formation propagation through links. Specifically, PageRank uses
the model of a random Web surfer (i.e. random walker), who ran-
domly follows hyperlinks over the Web. A current measure of a
Web page’s authority corresponds to the probability that a random
surfer lands upon that Web page. In our model, we assert that
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Figure 2: Truncated Web site graph of the University of Illinois
Urbana-Champaign. Bold lines represent edges stochastically
selected by the RWRH process

PageRank’s notion of authority corresponds to topical generality.
That is, Web pages with a high random surfer probability are likely
to be topically more general than others.

3.1.1 Term propagation in Web sites
Plenty of previous works in the information retrieval domain

use document-graph structure to enrich document features for im-
proved retrieval performance. We find that some of the intuition
behind these previous works are helpful in framing our generative
model.

A limitation of the random walker model is that it only looks at
the graphical structure of the Web. The word distributions found
in each document are clearly an important factor to consider when
generating Web hierarchies. Previous work by Song, et al. [27] and
Qin, et al. [24] show that a given Web page can be enriched by
propagating information from its children. Their relevance propa-
gation model modifies the language distribution of a Web page to
be a mixture of itself and its children according to the formula:

f ′(w; d) = (1 + α)f(w; d) +
(1− α)

|Child(d)|
∑

c∈Child(d)

f(w; c),

where f(w; d) is the frequency of term w in Web page d before
propagation, f ′(w; d) is frequency of term w in Web page d after
propagation, c is a child page of d in the sitemap T , and α is a
parameter to control the mixing factor of the children. This propa-
gation algorithm assumes that the sitemap, T , is constructed ahead
of time using URL features of the Web pages in a particular Web
site.

Note that f ′(w; d) is a pseudo frequency count that is unsmoothed.
The goal of previous works was to perform Web information re-
trieval, wherein they used BM25-type functions to normalize and
smooth the language distribution. For illustration purposes, lets
smooth the term distribution using Dirichlet prior smoothing [30].
The f ′(w; d) from above is used in place of the usual c(w; d).

pμ(w; d) =
f ′(w; d) + μp(w|C)

|d|′ + μ
,

where C is the distribution over all terms in V , μ is the smoothing
parameter, and the length is modified by the propagation algorithm
to be |d|′ = (1 + α)|d|.

As a result of the upward propagation pμ of the root document
(Web site entry page) contains all of the words from all of the Web
pages in the Web site. The most probable words are those that occur
most frequently and most generally across all documents, and are
thus propagated the most.

In traditional topic hierarchy models (hLDA, TopicBlock, etc.),

ComputingInformation
Assurance

Computer
Standards

Software Bugs

Protocols

Computer
Programming

Computer
Security

Data
Interchange

Software
AnomaliesComputer Errors

Computer Access
Control

Video Game Glitches

Debugging

Figure 3: Truncated portion of the Wikipedia category sub-
graph rooted at the node COMPUTING.

the root topic contains a distribution of all of the most general topic
words in the document collection.

pμ α = .5 hLDA γ = 1 HDTM γ = 0.95

illinois illinois illinois
computer computer computer
science science science

university graduate graduate
department research research

urbana university university

Table 1: Comparison of most probable words in top document
(in pμ), and in root topic of hLDA and HDTM

As a small, preliminary example, Table 1 shows the top six most
probable words in the top document (via text propagation) and in
root topics of hLDA and HDTM of the computer science depart-
ment’s Web site at the University of Illinois at Urbana-Champaign2.
We see that the most probable words from the sitemap based Web
document hierarchy is very similar to the most probable words in
the most general topic of hLDA. This small example reinforces our
intuition that certain Web sites have a hidden hierarchical topical
structure.

In the previous term propagation work, the sitemaps were con-
structed ahead of time using URL heuristics. Our goal is to learn
the document hierarchy automatically and in conjunction with the
topical hierarchy.

3.2 Other document hierarchies
Documents from many different collections exist in hidden hier-

archies. While technically a Web site, Wikipedia documents and
categories form a unique document graph. Wikipedia categories
are especially interesting because they provide a type of ontol-
ogy wherein categories have more specific sub-categories and more
general parent-categories. Most Wikipedia articles are are repre-
sented by at least one category description; this allows for users to
drill down to relevant articles in a very few number of clicks by
browsing the category graph. A partial example of the Wikipedia
category graph is shown in Figure 3.

Bibliographical networks may also be hierarchically structured.
In a bibliographic network, papers or authors (wherein each author
could be a collection of documents) are represented by nodes and
each citation is represented by an edge in the graph.

4. MODEL DESCRIPTION
We treat the problem of inferring the document hierarchy as a

learning problem akin to finding the single, best parent for each

2http://cs.illinois.edu



document-node. Unlike previous algorithms, which discover latent
topic taxonomies, the hierarchical document-topic model (HDTM)
finds hidden hierarchies by selecting edges from a set of possible
edges in the document graph. This section presents a detailed de-
scription of the model. A plate diagram of the generative process
is shown in Figure 5.

We begin with a document graph G = {D,E} of documents
D and edges E. Each document is a collection of words, where a
word is an item in a vocabulary. The basic assumption of HDTM
and similar models is that each document can be generated by ran-
domly mixing words from among topics. Distributions over topics
are represented by z, which is a multinomial variable with an as-
sociated set of distributions over words p(w|z, β), where β is a
Dirichlet hyper-parameter. Document-specific mixing proportions
are denoted by the vector θ. Parametric-Bayes topic models also
include a K parameter that denote the number of topics, wherein z
is one of K possible values and θ is a K-D vector. HDTM does not
require a K parameter as input. Instead, in HDTM there exist |G|
topics, one for each graph node, and each document is a mixture of
the topics on the path between itself and the root document.

In basic LDA, a single document mixture distribution is p(w|θ) =∑K
i=1 θip(w|z = i, βi). The process for generating a document

is (1) choose a θ of topic proportions from a distribution p(θ|α),
where p(θ|α) is a Dirichlet distribution; (2) sample words from the
mixture distribution p(w|θ) for the θ chosen in step 1.

HLDA is an extension of LDA in which the topics are situated
in a hierarchy T of fixed depth L. The hierarchy is generated
by the nested Chinese restaurant process (nCRP) which essentially
represents θ as an L-dimensional vector, defining an L-level path
through T from root to document. Because of the nCRP process,
every document lives at a leaf and the words in each document are
a mixture of the topic-words on the path from it to the root.

4.1 Random Walks with Restart at Home
Because the nCRP process forces documents to the leaves in the

hierarchy T , HDTM replaces nCRP with a slightly modified ver-
sion of random walk with restart (RWR) called random walk with
restart at home (RWRH). In traditional RWR, a walker begins by
selecting a random starting point. With probability (1 − γ) the
walker randomly walks to a new, connected location or chooses to
restart his walk at a random location with probability γ, where γ is
called the restart probability3.

In HDTM, the root node is fixed, either as the entry page of a
Web site, or by some other heuristic. Therefore, for the purposes
of hierarchy inference, we force the random walker to start and
restart at the root node i.e., at home. Forcing the random walker
to restart at the root is similar to, but not the same as, finding the
personalized PageRank score [2] between the root node and every
document-node in the hierarchy.

Let deg(u) be the outdegree of document u in G. Consider a
random walker visiting document d at time t. In the next time step,
the walker chooses a document vi from among u’s outgoing neigh-
bors {v|u→T v} in the hierarchy T uniformly at random. In other
words, at time t + 1, the surfer lands at node vi ∈ {v|u →T v}
with probability 1/deg(u). If at any time, there exists an edge
k ∈ {v|u →G v}, i.e, an edge between the current node u and the
target node k in the original graph G, then we record the probabil-
ity of that new path possibility for later sampling. Alg. 1 describes
this process algorithmically. This procedure allows for new paths
from the root r � k to be probabilistically generated based on the
current hierarchy effectively allowing for documents to migrate up,
3Most related works denote the restart probability as α, however,
this would be ambiguous with the Dirichlet hyper-parameter α.

Algorithm 1: Random Walk with Restart at Home

input : Path Probs. P , Current Node u, Target k, Weight w
globals: Graph G, Hierarchy T, Restart Prob. γ
output : P

foreach vi ∈ T.Ch(u) do /* child of u in T */
if vi �= k then

w← w + log
(

1−γ
len(T.Ch(u))

)
;

RWRH (P , vi, k, w); /* Recurse */

if u→G k then /* Edge u to k exists in G */

P.Put(u,w);

down and through the hierarchy during sampling. The bold edges
in Figure 2 show an example of edges stochastically selected by the
RWRH process.

4.2 Generating document paths
Because a document hierarchy is a tree, each document-node can

only have a one parent. Selecting a path for a document d in the
graph G is akin to selecting a parent u = Pa(d) (and grandparents,
etc.) from {d|u →G d} in the document graph G. HDTM creates
and samples from a probability distribution over each documents’
parent, where the probability of document u being the parent of d
is defined as:

depT (d)−1∏
k=0

1− γ

degT (dk)
,

where dk is the walkers current position at time k, depT (d) is the
depth of d in T , and degT (dk) is the outdegree of dk in T . In other
words, the probability of landing at d is the product of the emission
probabilities from each document in the path through T from r to
d.

The modified random walker function assigns higher probabili-
ties to parents that are at a shallower depth than those at deeper po-
sitions. This is in line with the intuition that flatter hierarchies are
easier for human understanding than deep hierarchies [14]. Simply
put, the restart probability γ controls how much resistance there is
to placing a document at successive depths.

Algorithmically, we infer document hierarchies by drawing paths
cd from the r to the document d. Thus, the documents are drawn
from the following generative process:

1. Each document d ∈ G is assigned a topic βd ∼ Dir(η):

2. For each document d ∈ G:

(a) Draw a path cd ∼ RWRH(γ)

(b) Draw an L-dimensional topic proportion vector θ from
Dir(α), where L =len(cd).

(c) For each word n ∈ {1, . . . , N}:

i. Choose topic zd,n|θ ∼ Mult(θd).
ii. Choose word wd,n|{zd,n, cd,β} ∼ Mult(βcd,zd,n ),

where βcd,zd,n is the topic in the zth position in cd.

In this generative process hierarchical nodes represent documents
and topics, where internal nodes contain the shared terminology of
its descendants.

Like in earlier models, there is statistical pressure in the poste-
rior to have more general terms in topics towards the root of the
hierarchy. This is because every path in the hierarchy includes the
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Figure 4: Illustration of two HDTM samples of the same data. Each node in the hierarchy
contains a document and an associated topic. During the generative process, general terms
are more likely to be found in topics near the root and vice versa.
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root node and there are more paths through nodes at higher levels
than through nodes at lower levels. As we move down the tree, the
topics, and therefore the documents, become more specific.

Hyperparameters also play an important role in the shape and
character of the hierarchy. The α parameter affects the smoothing
on topic distributions, and the η parameter affects the smoothing on
word distributions. The γ parameter is perhaps the most important
parameter because it affects the depth of the hierarchy. Specifically,
if γ is set to be large (e.g., γ = 0.95) then resulting hierarchy shal-
low. Low values (e.g., γ = 0.05) may result in deep hierarchies,
because there is a smaller probabilistic penalty for each step that
the random walker takes.

4.3 Inference
Exact inference on this model is intractable, so we must use a

approximation technique for posterior inference. The Gibbs sam-
pling algorithm is ideal in this situation because it simultaneously
allows exploration of topic distributions and potential graphical hi-
erarchies.

The variables needed by the Gibbs sampler are: wd,n, the nth
word in document d; zd,n, the assignment of the nth word in doc-
ument d; and cd,z , the topic corresponding to document at the zth
level. The θ and β variables are integrated out forming a collapsed
Gibbs sampler.

The sampling is performed in two parts: (1) given the current
level allocations of each word zd,n we sample the path cd,z , (2)
given the current state of the hierarchy, we sample zd,n.

4.3.1 Sampling document paths
The first Gibbs sampling step is to draw a path from each docu-

ment to the root through the graph. The sampling distribution for a
path cd is

p(cd|c−d, z,w, η, γ)

∝ p(cd,wd|c−d, z,w−d, γ, η)

= p(wd|c, z,w−d, η)p(cd|c−d)

(1)

where w is the count of terms in document d, and w−d are the
words without document d.

The second term represents the probability of drawing the path
cd,k to document d at depth k from the RWRH process. Recall that
each node has an emission probability of 1/degT (d), and a restart

probability of γ. We define the probability recursively:

p(cd,k|c−d, cd,1:(k−1))

=
∏
k=0

1− γ

degT (dk)
(2)

In other words, the probability of reaching d is equal to the proba-
bility of a random walker with restart probability γ being at docu-
ment d at time k.

The first term represents the word distribution:

p(wd|c,w−d, z, η)

=

max(zd)∏
k=1

Γ(
∑

w #[c−d,k = cd,k,w−d = w] + V η)∏
w Γ(#[c−d,k = cd,k,w−d = w] + η)∏

w Γ(#[z = k, ck = cd,k,w = w] + η)

Γ(
∑

#[z = k, ck = cd,k,w = w] + V η)

(3)

where max(zd) is the maximum depth of the current hierarchy
state.

4.3.2 Sampling word levels
Given the current state of all the variables, the sampler must first

pick an assignment z for word n in document d. The sampling
distribution of zd,n is

p(zd,n|c, z,w, η, γ)

∝ p(wd,n, zd,n|c, z−(d,n),w−(d,n), η, γ)

= p(wd,n|c, z,w−(d,n), η)p(zd,n|zd,−n, c, γ)

(4)

where zd,−n = {zd,·} \ zd,n and w−(d,n) = {w} \wd,n. The first
term is a distribution over word assignments:

p(wd,n|c, z,w−(d,n), η)

∝ #[z−(d,n) = zd,n, czd,n = cd,zd,n ,w−(d,n) = wd,n] + η

(5)

which is the η-smoothed frequency of seeing word wd,n in the topic
at level zd,n in the path cd.



The second term is the distribution over levels

p(zd,n = k|zd,−n, c, γ)

=

(
k−1∏
j=1

1− γ

degT (dj−1)

#[zd,−n > j]

#[zd,−n ≥ j]

)
×

1− γ

degT (dk−1)

#[zd,−n = k]

#[zd,−n ≥ k]
,

(6)

where we denote #[·] as the number of elements in the vector
which satisfy the given condition. We abuse notation in Eq. 6 so
that the product from j = 1 to k − 1 combines terms representing
nodes at the jth level in the path c down to the parent of dk, and the
second set of terms represents document dk at level k. The > sym-
bol in Eq. 6 refers to terms representing all ancestors of a particular
node, and ≥ refers to the ancestors of a node including itself.

5. EXPERIMENTS
This section describes the method and results for evaluating our

model. We show quantitative and qualitative analysis of the hier-
archical document-topic model’s ability to learn accurate and in-
terpretable hierarchies of document graphs. Our main evaluations
explore the empirical likelihood of the data and a very large case
study wherein human judges are asked to evaluate the constructed
hierarchies.

5.1 Data
We evaluate HDTM on three corpora: the Wikipedia category

graph, the Computer Science Department Web site at the University
of Illinois, and a bibliographic network.

Wikipedia CompSci Web site Bib. Network
root Computing cs.illinois.edu Ponte, SIGIR [23]
documents 609 1,078 4,713
tokens 5,570,868 771,309 43,345
links 2,014 63,052 8,485
vocabulary 146,624 15,101 3,908

Table 2: Comparison of most probable words in top document
(in pμ) and in root topic (in hLDA)

The Wikipedia dataset has been used several times in the past for
topic modeling purposes [12, 14]. Gruber et al., crawled 105 pages
starting with the article on the NIPS conference finding 799 links.
Ho et al. performed a much larger evaluation of their TopicBlock
model using 14,675 document with 152,674 links; however, they
truncated each article to only the first 100 terms and limited the vo-
cabulary to the 10,000 most popular words. Our Wikipedia dataset
is a crawl of the category graph of Wikipedia, beginning at the cat-
egory COMPUTING. In Wikipedia each category has a collection of
articles and a set of links to other categories; however, categories
don’t typically have text associated with them, so we considered
the text of each article associated with a particular category as the
category’s text. For example, the category INTERNET includes arti-
cles, INTERNET, HYPERLINK, WORLD WIDE WEB, ETC. In total
we constructed a graph of 609 categories from 6,745 articles. The
category graph is rather sparse with only 2,014 edges between cat-
egories, but has vocabulary size of 146,624 with 5,570,868 total
tokens. We did not perform any stopword removal or stemming.

We chose a computer science department Web site as the second
data set because it a rooted Web graph with familiar topics. By in-
ferring the document hierarchy, we aim to find the organizational
structure of the computer science department. Our intuition is that

Web sites reflect the business organization of the underlying en-
tity; thus we expect to find a subtrees consisting of courses, faculty,
news, research areas, etc. at high levels, and specific Web pages
at lower levels in the hierarchy. We crawled the Web site starting
at the entry page and captured 1,078 Web pages and 63,052 hyper-
links. In total there were 15,101 unique terms from 771,309 tokens.

The bibliographic network consists of documents and titles from
4,713 articles from the SIGIR and CIKM conferences. There exist
3,908 terms across 43,345 tokens in the document collection. In
this collection, links include citations between papers within the
CIKM and SIGIR conferences. Citations between documents were
provided by the authors of the ArnetMiner project [28], and is not
complete. A SIGIR 1998 paper by Ponte and Croft [23] was chosen
to be the root document because, in our records, it had the most in-
collection citations.

5.2 Quantitative Analysis
HDTM has some distinct qualities that make apples to apples

comparison difficult. Because HDTM is the first model to generate
document hierarchies based on graphs, there is nothing to directly
compare against. However, some of the models in the related work
perform similar tasks, and so we perform comparisons when we are
able.

The related works typically perform quantitative evaluation by
measuring the log likelihood on held out data or by performing
some other task like link prediction, etc. Log likelihood analysis
looks at the goodness of fit on held out data. Unfortunately, we are
not able to “hold out” any of our documents for testing, because
each document, especially a first or second level document, is very
important to the resulting hierarchy. Removing certain documents
might even cause the graph to separate, which would make hierar-
chy inference impossible. For quantitative evaluation, we borrow
the setup from [3] by comparing the states of each models’ Gibbs
sampler with the highest log complete likelihood.

We perform quantitative experiments on HLDA [3], TopicBlock
[14], TSSB [1], and fsLDA [25]. The fixed structure in fsLDA is
determined by a breadth first iteration over the document graph be-
cause URL heuristics were found to be unreliable. Hyper-parameters
are the default unless otherwise specified. The depth of HLDA and
TopicBlock is 4.

In all cases, a Gibbs sampler was run for 5,000 iterations; 2000
iterations were discarded as burn-in. Figure 5(a) shows the log
complete likelihood for each sample. We ran the the Gibbs sam-
pling algorithm on HDTM for various values of γ, and Figure 6
shows the best cumulative log complete likelihood for each of the
tested values of γ.

Interestingly, Figure 5(b) shows that higher likelihood values are
strongly correlated with hierarchies of deeper average depth; Fig-
ure 5(c) finds that the same is true for hierarchies of deeper maxi-
mum depth.

Figure 6 shows that HDTM with γ = 0.05 achieved the best
likelihood score, and HDTM with γ = 0.95 achieved the worst
likelihood score.

Table 3 shows the results of the different algorithms on the three
data sets. The TopicBlock and TSSB clearly infer models with the
best likelihood. The remaining algorithms, including HDTM, have
mixed results.

5.2.1 Discussion
In order to properly understand the results captured in Table 3,

recall that log probability is a metric on the fit of the observa-
tions on the configuration of the model. The original work on
LDA [4] found that likelihood increases as the number of topics
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Figure 5: Analysis of Likelihood Scores for 5,000 iterations of the Gibbs sampler run on the CompSci collection.
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Figure 6: Best cumulative log complete likelihood for each
tested γ value. Lower γ values result in deeper hierarchies.

CompSci Web site Wikipedia Bib. Network
HDTM γ = 0.05 -1.8570 -148.071 -0.4758
HDTM γ = 0.95 -9.2412 -148.166 -0.5183
HLDA γ = 1.0 -8.5306 -50.6732 -8.5448

TopicBlock γ = 1.0 -0.2404 -2.9827 -0.4192
TSSB k = 10 -0.5689 -0.0336 -0.4655

fsLDA -48.9149 -149.622 -0.6602

Table 3: Log complete likelihood results of the best sample
from among 5,000 Gibbs iterations. Values are ×106. Higher
values are better. Best results are in bold.

increases. Along those lines, Chang, et al. demonstrated that more
fine grained topics, which appear in models with a larger number
of topics have a lower interpretability, despite having higher like-
lihood scores. Simply put, there exists a negative correlation be-
tween likelihood scores and human interpretability.

Applying these lessons to our experiments recall that HDTM has
as many topics as there are documents, and non-root document top-
ics are mixtures of the topics on the path to the root. Also recall that
HLDA, TopicBlock and TSSB all generate a large number of latent
topics. In HLDA and TopicBlock, there are infinitely many top-
ics/tables in the nCRP. Practically speaking, the number of topics
in the final model is much larger than the number of documents
(conditioned on the γ parameter). In TSSB, the topic generation is

said to be an interleaving of two stick breaking processes; prac-
tically, this generates even larger topic hierarchies. The fsLDA
algorithm has as many topics as there are in hLDA, however, the
fsLDA hierarchy is not redrawn during Gibbs iterations to fit the
word distributions resulting in a lower likelihood.

Similarly, Figures 5(b) and 5(c) show that deeper hierarchies
have higher likelihood scores. This is because long document-to-
root paths, found in deep hierarchies, are able to provide a more
fine grained fit for the words in the document resulting in a higher
likelihood.

Therefore, we contend that the better likelihood values of HLDA,
TopicBlock and TSSB are due to the larger number of topics that
these models infer. A better way to evaluate model accuracy is by
some external task or by manually judging the coherence of the
topics.

5.3 Qualitative Analysis
To measure the coherence of the groupings, we modify the word

intrusion task developed by Chang et al [6] to create the document
intrusion task. In this task, a human subject is presented with a
randomly ordered set of eight document titles. The task for the
human judge is to find the intruder, that is, which document is
out of place or does not belong. If the set of documents with-
out the intruder document all make sense together, then the hu-
man judge should easily be able to find the intruder. For example,
given a set of computer science documents with titles {systems,
networking, databases, graphics, Alan Turing}, most
people, even non-computer scientists, would pick Alan Turing
as the intruder because the remaining words make sense together –
they are all computer science disciplines.

For the set {systems, networking, RAM, Minesweeper,

Alan Turing}, identifying a single intruder is more difficult. Hu-
man judges, when forced to make a choice, will choose an intruder
at random, indicating that the grouping has poor coherence.

To construct a set of document titles to present to the human
judge, we first select a grouping from the hierarchy at random (dis-
cussed in Sec. 5.3.1), and select 7 documents at random from the
grouping. If the there are fewer than 7 documents available in
the selected grouping, then we select all of the documents avail-
able; groupings of size less than 4 are thrown out. In addition to
these documents, an intruder document is selected at random from
among the entire collection of documents minus the documents in
the test group. Titles are then shuffled and presented to the human
judges.
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Figure 7: The model precision for five models on three document-graph collections. Higher is better. ∗ and ◦ represents statistical
significance from HDTM γ = 0.95 and γ = 0.05 respectively.
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Figure 8: Illustration of the intruder detection task from the
Wikipedia collection, wherein human judges are presented
with a set of document titles and asked to select the document
that does not belong.

5.3.1 Comparison Models
In preparation for human judgments, we construct a hierarchy

from the mode of sampled hierarchies. Specifically, at every 20th
sample (i.e. Gibbs lag = 20), the parent of each document is recorded.
After the Gibbs iterations are complete, each document is endowed
by the parent that it saw in the most samples.

Extracting document groupings for evaluation is slightly differ-
ent for each model. HDTM and fsLDA store a document at each
node in the hierarchy. We select a grouping by first picking a doc-
ument at random, and then choosing its siblings. TopicBlock and
HLDA store documents at the leaves of the taxonomy, which often
include several documents. We select a grouping from these mod-
els by first picking a document at random, and then choosing the
other documents in the leaf-topic.

The hierarchies that the TSSB model constructed allowed mul-
tiple documents to live at inner nodes, We were unsuccessful in
our attempts to evaluate groupings on inner nodes with more than
4 documents. We also tried to find nodes with 4 or more siblings,
however, the hierarchies that were generated were too sparse to find
practical groupings. Thus we were unable to provide human judges
with TSSB groupings.

Each document-graph collection had different types of labels
presented to the judges. The CompSci web site collection was la-
beled by the Web Page title and URL; the Wikipedia collection was
labeled by the category title as shown in Figure 8; the bibliography
network was labeled by the title of the paper.

5.3.2 Analyzing human judgments
The intruder detection tasks described above were offered on

Amazon Mechanical Turk. No specialized training is expected of
the judges. 50 tasks were created for each dataset and model com-
bination; each user was presented with 5 tasks at a time at a cost of
$0.07 per task. Each task was evaluated by 15 separate judges. In
order to measure the trustworthiness of a judge, we selected 5 easy
tasks, i.e., groupings with clear intruders, and created gold answers.

A Language Modeling Approach to Information Retrieval [the, a, retrieval, information, for, of, language]
Combining Multiple Classifiers for Text Categorization

Probabilistic combination of text classifiers using reliability indicators: models and results
Parameterized generation of labeled datasets for text categorization based on a hierarchical directory
Using bayesian priors to combine classifiers for adaptive filtering.

On-line spam filter fusion.
Spam filtering for short messages.
Relaxed online SVMs for spam filtering.

Robustness of adaptive filtering methods in a cross-benchmark evaluation.
Generalizing from relevance feedback using named entity wildcards.

Predicting the Cost-Quality Trade-Off for Information Retrieval Queries
Organizing structured web sources by query schemas: a clustering approach.
Information Retrieval as Statistical Translation.

Cross-lingual relevance models.
A search engine for historical manuscript images.
A method for transferring retrieval scores between collections with non-overlapping vocabularies.

Evaluating a Probabilistic Model for Cross-Lingual Information Retrieval.
Stemming in the language modeling framework.
Translating unknown queries with web corpora for cross-language information retrieval.

Mining translations of OOV terms from the web through cross-lingual query expansion.
Probabilistic structured query methods.

Addressing the lack of direct translation resources for cross-language retrieval.
Triangulation without translation.

Ambiguous queries: test collections need more sense.
Bayesian extension to the language model for ad hoc information retrieval.
Comparing cross-language query expansion techniques by degrading translation resources.

Measuring pseudo relevance feedback & CLIR.
Cross-lingual query suggestion using query logs of different languages.

Statistical cross-language information retrieval using n-best query translations.
Study of cross lingual information retrieval using on-line translation systems.
Using the web for automated translation extraction in cross-language information retrieval.

Bootstrapping dictionaries for cross-language information retrieval.
Detection and translation of OOV terms prior to query time.

and 16 others

Figure 9: Constructed hierarchy of bibliographic network with
HDTM γ = .95. Words at the root document represent the
most probable words in the root topic. Most probable words
for other documents are not shown due to space constraints.

Judges who did not answer 80% of the gold answers correctly are
thrown out and not paid. In total our solicitation attracted 31,494
judgments, across 14 models of 50 tasks each. Of these, 13,165
judgments were found to be from trustworthy judges.

We measure the model precision based on how well the intruders
were detected by the judges. Specifically, if the intruder word wm

k

is from model m and task k, and imk,j is the intruder selected by the
human judge j on task k in model m then

MPm
k =

∑
J

�(imk,j = wm
k )/J.

where �(·) is the indicator function and J is the number of judges.
The model precision is basically the fraction of judges agreeing
with the model.

Figure 7 shows boxplots of the precision for the four models
on three corpora. In most cases, HDTM performs the best. As
in [6], the likelihood scores do not necessarily correspond to human
judgments. This is probably because the RWRH function essentially
constrains the flexibility of the word sampler to operate only over
explicit paths in the rooted graph. Paired, two-tailed t-tests of statis-



tical significants (p < 0.05) performed between HDTM γ = 0.95
and γ = 0.05 and the other models are represented by ∗ and ◦ in
Figure 7 respectively.

The bibliography network data had relatively low precision scores.
This is probably because it was more difficult for the judges, who
were probably not computer scientists, to differentiate between the
topics in research paper titles. Figure 9 shows a small portion of
the document hierarchy for the bibliographic network dataset con-
structed with HDTM γ = .95. The root document has 20 children
in the hierarchy despite having 145 in-collection links. The remain-
ing 120 documents live deeper in the hierarchy because HDTM has
determined that they are too specific to warrant a first level position,
and have a better fit in one of the subtrees.

Recall that each document is associated with the topics from it-
self to the root, where the root is a single, general topic. The seven
most probable terms at the root level are also shown adjacent to the
root’s title in Figure 9. We see that these terms, like in HLDA and
TopicBlock, are terms that are general to the entire collection.

6. CONCLUSIONS
We have presented hierarchical document-topic model (HDTM),

a Bayesian generative model that creates document and topic hier-
archies from rooted document graphs. We hypothesized that docu-
ment graphs, such as Web sites, Wikipedia and bibliographic net-
works contain a hidden hierarchy, and we show corollaries to this
intuition in language model propagation literature. Unlike most
previous work, HDTM allows documents to live at non-leaf nodes
in the hierarchy, which requires a new path sampling technique
we call Random Walk with Restart at Home. An interesting side-
effect of the random walker adaptation is that the path sampling
step, Eq. 1, is much faster than the nCRP because RWRH only cre-
ates a sampling distribution for the parents of a document, whereas
the nCRP process creates a sampling distribution over all possible
paths in the taxonomy.

We performed several quantitative experiments comparing HDTM
with related models. We conclude, as others have before us, that
likelihood scores are a poor indicator of hierarchy interpretability,
especially when the number of topics are different between com-
parison models. We performed a large qualitative case study which
showed that the cohesiveness of the document groupings generated
by HDTM were statistically better than many of the comparison
models despite the poor likelihood scores.
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